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Abstract

Distance-hereditary graphs form an important class of
graphs, from the theoretical point of view, due to the
fact that they are the totally decomposable graphs for the
split-decomposition. The previous best enumerative result
for these graphs is from Nakano et al. (J. Comp. Sci.
Tech., 2007), who have proven that the number of distance-
hereditary graphs on n vertices is bounded by 2[3-5971,

In this paper, using classical tools of enumerative com-
binatorics, we improve on this result by providing an
exact enumeration and full asymptotic of distance-hereditary
graphs, which allows to show that the number of distance-
hereditary graphs on n vertices is tightly bounded by
(7.24975 .. .)»—opening the perspective such graphs could
be encoded on 3n bits. We also provide the exact enumera-
tion and full asymptoticss of an important subclass, the 3-leaf
power graphs.

Our work illustrates the power of revisiting graph de-
composition results through the framework of analytic com-
binatorics.

Introduction

The decomposition of graphs into tree-structures is a fun-
damental paradigm in graph theory, with algorithmic and
theoretical applications [5]. In the present work, we are
interested in the split-decomposition, introduced by Cun-
ningham and Edmonds [9, [10] and recently revisited by
Gioan et al. [20, 21, [7]. For the classical modular and
split-decomposition, the decomposition tree of a graph G
is a tree (rooted for the modular decomposition and unroo-
ted for the split decomposition) of which the leaves are in
bijection with the vertices of G and whose internal nodes
are labeled by indecomposable (for the chosen decomposi-
tion) graphs; such trees are called graph-labeled trees by
Gioan and Paul [20]. Moreover, there is a one-to-one cor-
respondence between such trees and graphs. The notion
of a graph being totally decomposable for a decomposition
scheme translates into restrictions on the labels that can ap-
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pear on the internal nodes of its decomposition tree. For
example, for the split-decomposition, totally decomposable
graphs are the graphs whose decomposition tree’s internal
nodes are labeled only by cliques and stars; such graphs are
called distance-hereditary graphs. They generalize the well-
known cographs, the graphs that are totally decomposable
for the modular decomposition, and whose enumeration has
been well studied, in particular by Ravelomanana and Thi-
monier [26], also using techniques from analytic combinato-
rics

Efficiently encoding graph classe{]is naturally linked to
the enumeration of such graph classes. Indeed the number
of graphs of a given class on n vertices implies a lower
bound on the best possible encoding one can hope for.
Until recently, few enumerative properties were known for
distance-hereditary graphs, unlike their counterpart for the
modular decomposition, the cographs. The best result so
far, by Nakano et al. [24], relies on a relatively complex
encoding on 4n bits, whose detailed analysis shows that there
are at most 213-597] unlabeled distance-hereditary graphs
on n vertices. However, using the same techniques, their
result also implies an upper-bound of 23" for the number of
unlabeled cographs on n vertices, which is far from being
optimal for these graphs, as it is known that, asymptotically,
there are C'd™/n3/2 such graphs where C' = 0.4126...
and d = 3.5608... [26]. This suggests there is room for
improving the best upper bound on the number of distance-
hereditary graphs provided by Nakano et al. [24]], which was
the main purpose of our present work.

This paper. Following a now well established approach,
which enumerates graph classes through a tree representa-
tion, when available (see for example the survey by Gimé-
nez and Noy [19] on tree-decompositions to count fami-
lies of planar graphs), we provide combinatorial specifica-
tions, in the sense of Flajolet and Sedgewick [17], of the
split-decomposition trees of distance-hereditary graphs and
3-leaf power graphs, both in the labeled and unlabeled cases.
From these specifications, we can provide exact enumera-
tions, asymptotics, and leave open the possibility of uniform
random samplers allowing for further empirical studies of

TBy which we mean, describing any graph from a class with as few bits

as possible, as described for instance by Spinrad [28].
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statistics on these graphs (see Iriza [23]]).

In particular, we show that the number of distance-
hereditary graphs on n vertices is bounded from above
by 237, which naturally opens the question of encoding
such graphs on 3n bits, instead of 4n bits as done by
Nakano et al. [24]. We also provide similar results for 3-
leaf power graphs, an interesting class of distance hereditary
graphs, showing that the number of 3-leaf power graphs on
n vertices is bounded from above by 227,

Main results. Our main contribution is to introduce the idea
of symbolically specifying the trees arising from the split-
decomposition, so as to provide the (previously unknown)
exact enumeration of certain important classes of graphs.

Our grammars for distance-hereditary graphs are in
Subsection 3] and our grammars for 3-leaf power graphs are
in Subsection[2] We provide here the corollary that gives the
beginning of the exact enumerations for the unlabeled and
unrooted versions of both classed’]

Corollary 1 (Enumeration of connected, unlabeled, unroo-
ted distance-hereditary graphs). The first few terms of the
enumeration, EIS A277862, are

1,1,2, 6,18, 73,308, 1484, 7492, 40010, 220676,
1253940, 7282316, 43096792, 259019070,
1577653196, 9720170360, 60492629435 . ..

and the asymptotics is c - 7.249751250..." - n=5/2 with
¢~ 0.02337516194.. . ..

Corollary 2 (Enumeration of connected, unlabeled, unroo-
ted 3-leaf power graphs). The first few terms of the enume-
ration, EIS A277863, are

1,1,2,5,12, 32,82, 227, 629, 1840, 5456, 16701,
51939, 164688, 529070, 1722271, 5664786,

18813360, 62996841, 212533216 . ..
and the asymptotics is c - 3.848442876..." - n=5/2 with
c ~ 0.70955825396 . . ..

1 Definitions and Preliminaries

For a graph G, we denote by V (G) its vertex set and E(G)
its edge set. Moreover, for a vertex x of a graph G, we denote
by N(x) the neighbourhood of z, that is the set of vertices
y € V(G) such that {z,y} € E(G); this notion extends
naturally to vertex sets: if V43 C V(G), then N (V7) is the set
of vertices in V(G) \ V; that is adjacent to at least one vertex

ZWith the symbolic grammars, it is then easy to establish recur-

rences [18| 129] to efficiently compute the enumeration—to the extent that
we were trivially able to obtain the first 10000 terms of the enumerations.
See a survey by Flajolet and Salvy [[16 §1.3] for more detail.

in V7. Finally, the subgraph of GG induced by a subset V; of
vertices is denoted by G[V;].

A graph on n vertices is labeled if its vertices are
identified with the set {1,..., n}, with no two vertices
having the same label. A graph is unlabeled if its vertices
are indistinguishable.

A clique on k vertices, denoted K} is the complete
graph on k vertices (i.e., there exists an edge between every
pair of vertices). A star on k vertices, denoted Sy, is the
graph with one vertex of degree k — 1 (the center of the star)
and k — 1 vertices of degree 1 (the extremities of the star).

1.1 Split-decomposition trees. We first introduce the no-
tion of graph-labeled tree, due to Gioan and Paul [20], then
define the split-decomposition and the corresponding tree,
described as a graph-labeled tree.

Definition 1. A graph-labeled tree (7', F) is a tre T in
which every internal node v of degree k is labeled by a graph
G, € F on k vertices, such that there is a bijection p,, from
the edges of 7" incident to v to the vertices of G,,.

Definition 2. A split [9] of a graph G with vertex set V' is a
bipartition (V4,V3) of V (ie., V.= V3 U Vo, Vi NV, = 0)
such that

(@) |Vi| > 1and |V5] > 1;

(b) every vertex of N (V1) is adjacent to every of N (V53).

A graph without any split is called a prime graph. A graph is
degenerate if any partition of its vertices without a singleton
part is a split: cliques and stars are the only such graphs.

Informally, the split-decomposition of a graph G
consists in finding a split (V3,V2) in G, followed by de-
composing G into two graphs G1 = G[V4 U {z1}] where
xz1 € N(V1) and G2 = G[VoU{z2}] where x2 € N(V3) and
then recursively decomposing GGy and G'2. This decomposi-
tion naturally defines an unrooted tree structure of which the
internal vertices are labeled by degenerate or prime graphs
and whose leaves are in bijection with the vertices of G, cal-
led a split-decomposition tree. A split-decomposition tree
(T, F) with F containing only cliques with at least three ver-
tices and stars with at least three vertices is called a clique-
star tree.

It can be shown that the split-decomposition tree of a
graph might not be unique (i.e., that several decomposi-
tions sequences of a given graph can lead to different split-
decomposition trees), but following Cunningham [9], we ob-
tain the following uniqueness result, reformulated in terms of
graph-labeled trees by Gioan and Paul [20].

Theorem (Cunningham [9])). For every connected graph G,
there exists a unique split-decomposition tree such that:

3This is a non-plane tree: the ordering of the children of an internal
node does not matter—this is why in most of our grammars we describe the
children as a SET instead of a SEQ, a sequence.
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(a) Example of a star-join.

(b) Example of a clique-join.

Figure 1. The star-join and clique-join operations result in the merging of two internal nodes of a split-decomposition tree.
A split-decomposition tree in which neither one of these operations may be applied (and in which all non-clique and non-star

nodes are prime nodes) is said to be reduced.

(a) every non-leaf node has degree at least three;

(b) no tree edge links two vertices with clique labels;

(c) no tree edge links the center of a star to the extremity of
another star.

Such a tree is called reduced, and this theorem establishes
a one-to-one correspondence between graphs and their re-
duced split-decomposition trees. So enumerating the split-
decomposition trees of a graph class provides an enumera-
tion for the corresponding graph class, and we rely on this
property in the following sections.

1.2 Decomposable structures. In order to enumerate
classes of split-decomposition trees, we use the framework
of decomposable structures, described by Flajolet and Sed-
gewick [[17]]. We refer the reader to this book for details and
outline below the basics idea.

We denote by Z the combinatorial family composed of a
single object of size 1, usually called atom (in our case, these
refer to a leaf of a split-decomposition tree, i.e., a vertex of
the corresponding graph).

Given two disjoint families A and B of combinatorial
objects, we denote by A + B the disjoint union of the two
families and by A x B the Cartesian product of the two
families.

Finally, we denote by SET(A) (resp. SET> (A),
SET, (A)) the family defined as all sets (resp. sets of size
at least k, sets of size exactly k) of objects from A, and by
SEQ>, (A), the family defined as all sequences of at least &
objects from A.

Remark 1. Because this paper deals with classes both rooted
(either at a vertex/leaf or an internal node) and unrooted, we use
some notations to keep these distinct. But these notations are purely
for clarity.

For instance, while we use Zo to denote a rooted vertex, and Z
to denote an unrooted vertex, these are both translated in the same
way in the associated generating functions and enumerations.

Remark 2. Decomposable structures specified by these grammars
can either be:

e labeled: in a given object, each atom is labeled by a distinct
number between 1 and n (the size of the object); this means
that each “skeleton” of an object appears in n! copies, for
each of the possible way of labeling its individual atoms, and
because each atom is distinguished, there are no symmetries;

e or unlabeled: in which case, an atom is indistinguishable from
the next, and so certain symmetries must be taken into account
(so that two objects which are not decomposed in the same
way but have the same ultimate shape are not counted twice).

It is often the case that enumerations for labeled classes are easier
to obtain than for unlabeled ones. Our grammars allow to derive
generating functions, enumerations, and asymptotics for both.

2 3-Leaf Power Graphs

The first class that we discuss is that of 3-leaf power graphs:
a chordal subset of distance-hereditary graphsﬂ

Definition 3. A graph G = (V, E) is a k-leaf power graplﬂ,
if there is a tree 1" (called a k-leaf root of graph (z) such that:
(a) the leaves of T are the vertices V;
(b) there is an edge zy € E if and only if the distance in T’
between leaves x and y is at most k, dr(z,y) < k.

These families of graphs are relevant to phylogenetics [25]:
from the the pairwise genetic distance between a collection
of species (which is a graph), it is desirable to establish a tree
which highlights the most likely ancestry (or more broadly,
the evolutionary relationships) relations between species.

We begin with the enumeration of 3-leaf power graphs,
the smaller combinatorial class, because the application of
" ¥Not a maximal such subset, as it is known that prolemaic graphs are the
intersection of chordal graphs and distance-hereditary graphs.

SThis is a specialization, introduced by Nishimura et al. [25 §1], of the
concept of graph powers, in which the root is a tree—but the definition can
be extended to the case where T is not a tree, but is a graph H (in which
case, we consider the distance between any two vertices in graph H, not
two leaves of a tree).



the dissymmetry theorem (used to obtain an enumeration
of the unrooted class given the grammar for some rooted
version of the class) in Subsection [2.3] is less involved for
3-leaf power graphs than it is for distance-hereditary graphs.

2.1 Grammalﬂ from the split-decomposition. The star-
ting point is the characterization of the split-decomposition
tree of 3-leaf power graphs, as introduced by Gioan and
Paul [20].

Theorem (Characterization of 3-leaf power split-decompo-
sition tree [20} § 3.3]). A connected graph G = (V,E) is a
3-leaf power graph if and only if:
(a) its split-decomposition tree ST(G) is a clique-star tree
(implies that G is distance-hereditary);
(b) the set of star-nodes forms a connected subtree of T';
(c) the center of a star-node is incident either to a leaf or a
clique node.

This is unsurprising given that an alternate (perhaps more
pertinent) characterization is that a 3-leaf power graph can
be obtained from a tree by replacing every vertex by a clique
of arbitrary size.

Theorem 1. The class 3LPq of 3-leaf power graphs rooted
ata verte)ﬂ is specified by

30Py = L4 x (S +8x) + K Q2.1
8¢ = SET>5 (L + 8x) (2.2)
8x =L X SET>1 (£ + 8x) (2.3)
L =2+ SET>2 (2) (2.4)

Lo =Ze + Zo X SET5 (2) (2.5)
Ko = Ze X SET>2(2). (2.6)

In this combinatorial specification, we define several classes
of subtrees: we denote by Sx (resp. S¢) the class of split-
decomposition trees rooted at a star-node which are linked
to their parent by an extremity of this star-node (resp. the
center of this star-node).

Finally, because the structure of the split-decomposition
tree of a 3-leaf power graph only allows for cliques that are
incident to at most one star-node (and the rest of the edges
must lead to leaves), we have three classes £, £, and K,
which express leaves and cliqueﬂ

S All grammars that we produce in this article yield an incorrect enume-
ration for the first two terms (graphs of size 1 and 2), because Cunningham’s
Theorem, presented in Subsection [T.1] requires non-leaf nodes to have de-
gree at least three: thus the special cases of graphs involving only 1 or 2
nodes must be treated non-recursively. While we could amend the gram-
mars accordingly, we think it would be less elegant—especially since there
is generally little confusion regarding those first few terms.

70r, equivalently, rooted at a leaf of its split-decomposition tree.

8The class £ is a class containing either a leaf; or a clique-node
connected to all but one of its extremities to leaves. The class Lo is that
same class, in which one of the leaves has been distinguished (as the root of
the tree).

Proof. In addition to the constraints specific to 3-leaf po-
wer split-decomposition trees given in the characterization
above, because the split-decomposition trees we are enu-
merating are reduced (see Cunningham’s Theorem in Sec-
tion@, there are two additional implicit constraints on their
internal nodes:

o the center of a star cannot be incident to the extremity of
another star (because then they would be merged with
a star-join operation, as in Figure [Ia] yielding a more
concise split-decomposition tree);

e and two cliques may not be incident (or they would be
merged with a clique-join operation, as in Figure[Tb).

The star-nodes form a connected subtree, with each star-node
connected to others through their extremities; the centers are
necessarily connected to “leaves”, and the extremities may
be connected to “leaves”; “leaves” are either single nodes
(actually leaves) or cliques (which are a set of more than two
elements, because cliques have minimum size of 3 overall,
including the parent node).

First, the following equation
S = SET>2 (L + Sx)

indicates that a subtree rooted at a star-node, linked to its
parent (presumably a leaf) by its center, is a set of size at
least 2 children, which are the extremities of the star-node:
each extremity can either lead to a “leaf” or to another star-
node entered through an extremity.

Next, the equation

Sx =L % SET>1 (L +Sx)

indicates that a subtree rooted at a star-node, linked to its
parent by an extremity, is the Cartesian product of a “leaf”
(connected through the center of the star-node) and a set of 1
or more children which are the extremities of the star-node:
each leads either to a “leaf” or to another star-node entered
through an extremity.

The “leaves” are then either an actual leaf of unit size,
or a clique; the clique has to be of size at least 3 (including
the incoming link) and the children can only be actual leaves.
We are thus left with

L =2+ SET>5(2).

Finally, the rest of the grammar deals with the special cases
that arise from when the split-decomposition tree does not
contain any star-node at all. O

With the grammar for 3L7P,, we are able to produce the exact
enumeration for labeled rooted 3-leaf power graphs, and by
a simple algebraic trick, for unlabeled rooted 3-leaf power
graphs.



Corollary 3 (Enumeration of labeled 3-leaf power graphs).
Let T'(z) be the exponential generating function associated
with the class 30P,. Then, the enumeration of labeled,
unrooted 3-leaf power graphs, for n > 3, is given by

tn, = (n—1)!z"|T(2), 2.7

to the effect that the first few terms of the enumeration,
EIS A277868, are

1,1,4, 35,361, 4482, 68027, 1238841, 26416474,
646139853, 17837851021, 548713086352, . . .

2.2 Unrooting unlabeled objects. The trees described by
the specification of 3LP, have leaves which are labeled,
one of which is the root. Thus because each label has
equal opportunity of being the root, it is simple to obtain
an enumeration of the labeled unrooted class by dividing by
n.

When now considering unlabeled trees, however, pro-
ceeding in this way leads to an overcount of certain trees,
because of new symmetries introduced by the disappearance
of labels. Fortunately, we can use the dissymmetry theorem
for trees, which expresses the enumeration of an unrooted
class of trees in terms of the enumeration of the equivalent
rooted class of trees.

This theorem was introduced by Bergeron et al. [2] in
terms of ordered and unordered pairs of trees, and was even-
tually reformulated in a more elegant manner, such as in Fla-
jolet and Sedgewick [17, VII.26 p. 481] or Chapuy et al. 6}
§3]. It states

‘A‘ + ‘AO*)O = ‘AO + AO*O (2'8)
where A is the unrooted class of trees, and A, A,_o, Ao_so
are the rooted class of trees respectively where only the root
is distinguished, an edge from the root is distinguished, and
a directed, outgoing edge from the root is distinguishecﬂ

The application of this theorem may initially be per-
plexing, and so we begin by making a couple of remarks.

Lemma 1. In the dissymmetry theorem for trees, when
rerooting at the nodes (or atoms) of a combinatorial tree-
like class A, leaves can be ignored.

Proof. When we point a node of the class A, we may
distinguish whether it is an internal node or a leaf, which
we respectively denote ¢ and e in the right hand side of the
following equations (please bear these notations; the purpose

9Drmota [12] §4.3.3, p- 293] presents an elegant proof of this result by
appealing to the notion of center of the tree—which may be a single vertex
or an edge; indeed, Drmota builds a bijection between the trees Ay rooted
at a non-central vertex/edge and trees rooted at a directed edge, by orienting
the root of the first class in the direction of the center.

of this lemma is to show they can be safely omitted in what
follows). Accordingly,

Aosso = Aaryo Tt Aoso + Aose
Ao = 'A-—o + ‘A<>—<>
Ay =Ay+ A,

where the first equation should be understood as: if we mark
a directed edge of the class A, it can either go from an
internal node to a leaf, from a leaf to an internal node, or
from an internal node to another internal nodd™)}

These equations may be further simplified upon obser-
ving that any edge of which one of the endpoints is a leaf, is
entirely determined by that leaf, to the effect that

Ae =He o =Aeso = HAeso

Thus proving that one may disregard leaves entirely when
applying the dissymmetry theorem for trees. O

Remark 3. While the dissymmetry theorem considers pointed
internal nodes, our grammars 3LP, and DH, (respectively de-
rived from the split-decomposition of 3-leaf power graphs and
distance-hereditary graphs) are pointed at the leaves of the split-
decomposition tree (which correspond to the vertices of the original
graph).

This is not, in fact, a discrepancy. When we apply the
dissymmetry theorem, we implicitly reroot the trees from our
grammars at internal nodes, which we express as subclasses T, of
trees rooted in some specific type of internal node x. Rerooting an
already rooted tree is relatively easy (while unrooting a rooted tree
is not!).

Remark 4. The dissymmetry theorem establishes a bijection
between two disjoint unions; this allows us to recover an equation
on the coefficients,

[27]A(2) = [2"]As(2)
+ [z 400 (2)

— [2"]Aosso (2). (2.9)

However the subtraction has no combinatorial meaning, which
means that once the dissymetry theorem has been applied, we lose
the symbolic meaning of the equation.

While this is enough to compute exact enumerations (by ex-
tracting the enumeration of each generating function and algebrai-
cally computing the equation), and is sufficient to deduce some
asymptotics, there is not enough information, for instance, to yield
a recursive sampler [[18] or a Boltzmann sampler [14,[15]—and we
are instead left with ad-hoc methods to generate unrooted objects,
see Iriza [23} § 3.2].

OWe are ignoring the very special case of a tree reduced to an edge, in

which we may have an edge between two leaves; this explains why our
unrooted grammars may, if uncorrected, be wrong for the first two terms.
This is analogous to the initial term errors of our rooted grammars, as
expressed in Footnote@



Unrooting the initial grammar while preserving the symbolic
nature of the specification requires using a more complex combina-
torial tool called cycle-pointingE] introduced by Bodirsky et al. [4]],
and applied to these grammars by Iriza [23| §5.5], it has allowed us
to generate the random graphs provided in figures to this article.

2.3 Applying the dissymmetry theorem.

Theorem 2. The class 3LP of unrooted 3-leaf power graphs
is specified by

3LP =K +Tsg+Ts_s —Ts_s (2.10)
Ts =L X 8¢ (2.11)
Ts_g = SETo (Sx> (2.12)

Tss=8x X Sy (2.13)
8¢ = SET>2 (L + 8x) (2.14)
Sx = £ X SETs; (£ + 8x) (2.15)

L =2+ SET>, (2) (2.16)
K = SET>3(Z). 22.17)

Proof. From the dissymmetry theorem, we have the symbo-
lic equation linking the rooted and unrooted decomposition
tree of 3-leaf power graphs,

3LP =3LP, +30P,_, —3LPo_,..

As per LemmalI] it suffices to consider only internal nodes,
and the only type of internal node found in these split-
decomposition trees is the star-node{]zl

So we must reroot the grammar 3L P,, which is rooted
at a leaf of the split-decomposition tree, to each of: a star-
node, an undirected edge connecting two star-nodes, and a
directed edge connecting two star-nodes.

Rerooting at a star-node, we must consider all the
outgoing edges of the star. The center will lead either to
a leaf, or to a clique—this is the rule £; what remains are
then the extremities, which can be expressed by the term
S8¢. Since the center is distinguished, this is combined as
a Cartesian product, hence

‘TS:,CXSC.

Next, we reroot at an edge. Since these split-decomposition
trees are reduced, two star-nodes can only be adjacent at their
respective centers, or at two extremities; but because of the

MThis operation, given a structure of size n, finds n ways to group
its atoms/vertices in cycles which mirror the symmetries of the structure.
This is analogous to atom/vertex-pointing in labeled objects, where each
structure of size n can be pointed n different ways (each atom/vertex can be
pointed because they are each distinguishable and there are no symmetries
that would make two different pointings equivalent).

121n the split-decomposition of a 3-leaf power graph, clique-nodes cannot
have any children other than leaves; as a result, they may be considered as
leaves for the purpose of the dissymmetry theorem.

additional constraint for 3-leaf power graphs, two star-nodes
can only be adjacent at their extremities.

Rerooting at an undirected edge will yield a set contai-
ning two elements; rerooting at a directed edge will yield a
Cartesian product. Thus, we have

Ts_s = SETy (SX)
(‘TS%S = SX X Sx.

Finally, as with the original vertex-rooted grammar 3£7P,,
we must deal with the special case of a graph reduced to a
clique, as it does not involve any star-node. O

Corollary 2 (Enumeration of unlabeled, unrooted 3-leaf
power graphs). The first few terms of the enumeration,
EIS A277863, are

1,1,2,5,12, 32,82, 227, 629, 1840, 5456, 16701,
51939, 164688, 529070, 1722271, 5664786,
18813360, 62996841, 212533216 . . .

3 Distance-Hereditary Graphs

A graph is totally decomposable by the split-decomposition
if every induced subgraph with at least 4 vertices contains
a split. And it is well-known [22]] that the class of totally
decomposable graphs is exactly distance-hereditary graphs.

Deriving the rooted grammar provided in Theorem [3]
is easier than for 3-leaf power graphs, because there are
few constraints on the split-decomposition tree of distance-
hereditary graphs; as a result, applying the dissymmetry
theorem will be a bit more involved because there are two
types of internal nodes at which to reroot the tree.

Theorem 3. The class DH, of distance-hereditary graphs
rooted at a vertex is specified by

DHe = 2Z¢ X (K + 8¢+ 8x) (3.18)
K = SET»3 (Z + 8¢ + Sx) (3.19)
8¢ = SET»2 (2 4+ K + 8x) (3.20)
8x = SEQss (2 + K +8¢). (3.21)

Proof. We describe a grammar for clique-star trees subject
only to the irreducibility constraint: a star’s center cannot be
connected to the extremity of another star (see Figure [Ta),
and two cliques cannot be connected (see Figure [Tb).

We start with the following rule

DH, = Zo x (K + 8¢ + 8x)

in which Z,, the vertex at which the split-decomposition tree
is rooted, can be connected either to a clique XK, or to a star’s
extremity 8 x, or to a star’s center S¢.

Next, we describe subtrees rooted at a clique

fK:SET>2 (Z+Sc+8X)y



we are connected to our parent by one of the outgoing
edges of the clique, and because clique-nodes have size at
least 3 (see Cunningham’s Theorem in Subsection [[.T|which
requires non-leaf nodes to have degree at least 3), we are left
with at least two subtrees to describe:

e these subtrees can either be a leaf Z, or a star entered ei-
ther by its center S¢ or its extremity & x—they cannot
be another clique because our tree could then be redu-
ced with a clique-join operation;

e because of the symmetries within a clique (in particular
there is no ordering of the vertices), the order of the
subtrees does not matter, and so these are described by
a SET operation.

By similar arguments, we describe subtrees rooted at a star
which is connected to its parent by its center,

SC:SET>2 (Z+5K+Sx).

Because the star’s center is connected to its parent, we need
only express what the extremities are connected to; each of
these can be connected to a leaf, a clique, or another star
by one of that star’s extremity (to avoid a star-join). Again,
as the extremities are indistinguishable from each other—
the star is not planar—we describe the subtrees by a SET
operation.

We are left with the subtrees rooted at star which is
connected to its parent by an extremity; these may be
described by

Sx :(Z’—FK—FS(;') XSET21 (Z—I—K—"-Sx)

Indeed, the first term of the Cartesian product is the subtree
to which the center is connected (either a leaf, a clique, or
another star at its center); the SET expresses the remaining
extremities—of which there is at least one. This equation
can be simplified to obtain the one in the Theorem—but this
simplification is proven in Appendix [A] O

Remark 5. We notice the same symbolic rules for the clique-node
X and the star-node Sc entered through the center, respectively
in Equations and (3:20). This suggest these nodes play a
symmetrical role in the overall grammar, and that their associated
generating function (and enumeration) are identical.

It would be mathematically correct to merge both rules, e.g.

DHo = 2o x (K +K +8) (3.22)
K = SETs (24K +8) (3.23)
8 = SEQs» (Z+ K +K). (3.24)

This may be convenient (and lead to additional simplifications) for
some uses, such as the application of asymptotic theorems like
those introduced by Drmota [11] (see Section [) which requires
classes be expressed as a single functional equation.

However the combinatorial meaning of the symbols is lost:
in the above system, it can no longer be said that K represents a
clique-node. This is problematic for parameter analysis (e.g., if
trying to extract the average number of clique-nodes in the split-
tree of a uniformly drawn distance-hereditary graph).

Theorem 4. The class DI of unrooted distance-hereditary
graphs is specified by

PDH =Tk +Ts+Ts_s —Tk_s—Tss (3.25)
Tk = SET>3 (Z + 8¢ + Sx) (3.26)
Tg = (Z + X+ Sc) X 8¢ (3.27)

Ti_s =K x (S¢ +8x) (3.28)
Ts_s = SET3 (8¢) + SET2 (8x) (3.29)
Ts,5 =8c X8c+8x X8x (3.30)
X = SET>o (Z48c +8x) (3.31)

8¢ = SET>» (Z + X + Sx) (3.32)
Sx = SEQss (Z+ K +8¢). (3.33)

Proof. This is again an application of the dissymmetry theo-
rem for trees, and as before, we may ignore the leaves, and
mark only the internal nodes,

DH = DH, + DH,_o — DHo ..

Unlike for 3-leaf power graphs in Subsection the tree
decomposition of distance-hereditary graphs clearly involves
two types of internal nodes: cliques and stars. If we express
all the rerooted trees we will have to express, we get the
expression:

DH =Tk +Tg
+Ts5—s+Ts—K

—Ts5s = Tsor — Tkos. (3.34)

Note that we do not have a tree rerooted at an edge involving
two cliques, because as mentioned previously, the split-
decomposition tree would not be reduced, since the two
cliques could be merged with a clique-join.

A first simplification can be made, because a directed
edge linking two internal nodes of different type is equivalent
to a non-directed edge, because the nature of the two internal
nodes already distinguishes them, thus in particular here

Tkos ~Tk_s.
In doing so, several terms cancel out, which leads us to:
DH =T +Ts+Ts—s —Tk_-s5 —Tsos.
We then only have to express the rerooted classes:

Tk  For a clique-node, we must account for at least

three outgoing edges, which can be connected
to anything besides another a clique-node.



Ts  For a star-node, we reuse the same trick as
previously: we express what the center can be
connected to (either a leaf, a clique-node or
the center of another star-node), and then we
use S¢ to express the remaining extremities, as
explained in the unrooted grammar for the 3-

leaf power graphs.

The undirected edge already accounts for a
connection between a clique-node and a star-
node, so we must describe the remaining out-
going edges of these two combined nodes: for
the clique, this can be expressed by reusing the
subtree X (which is exactly a tree rooted at a
clique which is missing one subtree—the one
connected to the star-node); for the star, if it is
connected to the clique-node by its extremity,
we can use S x, otherwise S¢.

Tr—-s

Two star-nodes can only be connected at two of
their extremities, or their respective center
because the edge is undirected, we use a SET
operation.

Same as above, except the edge now being di-
rected, we use a Cartesian product to distinguish
a source star-node and a destination star-node.

O

Ts-s

4 Asymptotics

Using singularity analysis of generating functions, we can
now derive asymptotic estimates for the number of un-
labeleaﬁ] (rooted and unrooted) 3-leaf power graphs and
distance-hereditary graphs, with respect to the number n of
vertices.

The strategy in both cases is very similar, and uses
a simplified version of the Drmota-Lalley-Woods theorem
for tree-like objects, exposed both in the original article by
Drmota [[L1] and in the Flajolet and Sedgewick book [17,
§VIL.6.3 p. 488].

The first step is to study the rooted case, starting from
the decomposition grammar: Theorem [I] for 3-leaf power
(3LP) graphs; Theorem [3| or rather the simplified version
presented in Remark [3] for distance-hereditary (DH) graphs.
This grammar can be translated into an equation system for
the corresponding generating functions. Although this is not

BFor the 3-leaf power graphs, we only considered two star-nodes connec-

ted at two of their extremities, because part of the characterization of 3-leaf
power graphs is that the center of stars are oriented away from other stars.

14As previously mentioned, labeled objects are a lot easier to enumerate
because of the exact 1-to-n correspondance between labeled rooted and
unrooted objects; therefore we do not study that case.

a prerequisite to analysis, the system is in fact sufficiently
simple that, using suitable manipulations, it can be reduced
to a single-line equation of the form y = F(y, z), where
y is one of the rooted generating functions and all the
other functions have a simple expression in terms of y.
The Drmota-Lalley-Wood theorem then ensures that the
rooted generating functions classically have a square-root
singularity, yielding asymptotic estimates of the form c-p—"-
n=3/2,

The next step is to study the generating function U(2)
for unrooted 3LP (resp. DH) graphs. From the dissymmetry
theorem (Theorem [2] for 3LP graphs, Theorem 4] for DH
graphs), we obtain an expression of U(z) in terms of y (the
rooted generating function) and z, from which we can obtain
a singular expansion of U(z). As expected, the subtractions,
from the dissymmetry theorem, involved in the expression
of U(z) yield a cancellation of the square-root terms, so
that the leading singular terms are at the next order, yielding
asymptotic estimates of the form d - p=™ - n=5/2 (which are
expected for unrooted “tree-like” structures).

Remark 6. A similar approach has been previously applied to ano-
ther tree decomposition of graphs (decomposition into 2-connected
blocks and a tree to describe the adjacencies between blocks). Ba-
sed on this decomposition, the asymptotics for several families
(both labeled and unlabeled) of graphs have been obtained (cacti
graphs, outerplanar graphs [3]], series-parallel graphs [13]]), all of
the form ¢ - p=™ - n=5/2,

4.1 Asymptotics of 3-leaf power graphs. In this subsec-
tion, we will implement the method described above, and
take the time to point out some of the finer points of the ana-
lysis. Most of this process is then recycled in the analysis of
distance-hereditary graphs in the next subsection.

Rooted case. Our starting point is the grammar for
rooted 3-leaf power graphs, as given by Theorem [ We
let L(z) and Sx(z) be the generating functions of £ and
S8x. In particular, using the symbolic method, Eq. (2.3) in
Theorem ] translates into the functional equation:

Sx(2) = 1()- | exp | 305 (B=0) + 8x(:1) | —1

i>1

Because our objects are unlabeled, we may identify a set of
undistinguished elements with a sequence of undistinguished
elements (this simplification is untrue in the labeled case),

SET> (Z) ~ SEQs (%) (4.35)
and thus let L(z) = z/(1 — z).
With this simplification, we find that y := Sx(2)

satisfies the functional equation

y=1—(expy+B() -1,



Figure 2. A randomly generated distance-hereditary graph with 52 vertices, produced using the Boltzmann samplers developed

by Iriza [23].

where

+Z%Sx(zi).

i>2

This is a functional equation of the form y = F(z,y), with
F(z,y) a bivariate formal power series with non-negative
coefficients and that has nonlinear dependence on y.

We must show this power series exhibits certain pro-
perties, namely that it is a-positive, a-proper, and a-
irreducible [17, p. 489]. To this end, let p be the radius of
convergence of Sx (z):

e The fact that F'(z,y) is superlinear in y, ensures that
Sx(z) converges to a finite positive value (which we
denote by 7) when z tends to p from below.

e Furthermore, it is straightforward to combinatorially
check that the coefficients of Sx, [2"]Sx(z), have
exponential growth, i.e., there is an @ > 1 such that
[2"]Sx(z) > «am, for large enough n. This in turn
implies the radius of convergence p is such that p < 1,
thus that B(z) is analytic at p and hence F'(z,y) is
analytic at (p, 7).

Under these conditions, the Drmota-Lalley-Woods theo-
rem [[I7, Thm VIL6 p. 489] may be applied"} This results in
a singular expansion of Sx (z) around p of the form

Sx(z)=1—c - Z+0(2Z?)

51t follows that the singularity of Sx (z) is a square-root singularity, due

to a branch point [17) p. 495]: this means in particular that Fy (z,y) = 1
and (2,) = (p,7).

with

) F.(p, )
Fyy(p,7)

Z:=+/1=z/p and c=,/2p

where we use the notation F, := 9F/dz for partial deriva-
tives.

Moreover we calm apply classical transfer theo-
rems [17, Thm VL6 p. 404] to obtain

c _ _
1t

V2T P

Now, in order to evaluate the singularity p, we have to solve
the system,

[27]5x (2) ~

y=Fizy) (4.36)
1=Fy(z,y)
This presents a difficulty, due to the fact that F'(z, y) involves
quantities of the form S(z?) fori > 2.

Following Flajolet and Sedgewick [17, §VIL.5] howe-
ver, we can accurately approximate these quantities by the
truncated generating function Sx [™1(z%), where Sx [l (z) is
the polynomial of degree m coinciding with the Taylor ex-
pansion of Sx(z) to order m. Denoting by F")(z,y) the
corresponding (now explicit) approximation of F'(z,y), we
can solve for the system

y = FIml(f,y)
1= F,Mm(fy)

Because Sx () has an analytic continuation to a A-domain of the form

(Il <p+eyniz—p¢ Ry}



and the obtained solution (pl™ 7[™]) is found to converge
exponentially fast as m increases; we find

p ~ 3.848442876. ..
which is the exponential growth of 3-leaf power graphs.

Unrooted case. We now continue with the asymptotic
enumeration of unrooted 3LP graphs. The grammar from
Theorem [2] is a superset of the terms of Theorem [I] so our
previous expressions, in particular for Sx(z) and related,
still hold. We now want to express the generating function
U(z) of unrooted 3LP graphs in terms of Sx(z) and will
show that the leading singular term is of order Z2 due to a
cancellation of the coefficients for terms of order Z.

To this end, will need to manipulate singular expansions
up to order Z3, and a first important fact is that, as an
application of the Drmota-Lalley-Woods theorem, Sx(z)
admits such an expansion, of the form

Sx(z)=7—c-Z+d-Z*+e-Z°+0(2°).

Again, we define U (z) as the generating function of unrooted
3LP graphs according to the number of vertices. It follows
from the grammar given by Theorem [2] that

U(z) = K(2) + Ts(z) + Ts-s(2) — Ts—s(2).

We now seek to express this as a single functional equation,
for convenience. First, using the same combinatorial simpli-
fication of Eq. (#.33)) that we used in the rooted case (which,
again, is only possible because we are dealing with unlabeled
objects), we have K (z) = z3/(1 — z).

In order to express Ts(z) in terms of Sx(z), we make
the following formal manipulations,

Sx =L x SET>1(L —|—Sx)
=L XSET)Q(L +Sx)—|-£ X (L —l—Sx)
=Ts+ L x (L +8x)

hence
Ts(z) = Sx(2) — L(z) - (L(2) + Sx(2))

which, using our previous simplification of L(z), yields

1iz'(1iz+SX(Z)>'

Finally, the rerooted subclasses, Js_g and Ts_, g, are fortu-
nately already expressed in terms of the generating function
of 8x, as we have

Ts(Z) = Sx(z) -

Sx(ZQ) + Sx(z)2
2

TS_S(Z) = and TS_>5(Z) = Sx(Z)Z

so that by combining all these generating functions, we

obtain

B 23 Sx(2?)
1—2 2

+ Sx(2)
z z Sx(2)?
1> <1_Z+Sx(z)> 5
This is of the form U(z) = G(z, Sx (z)), where we define

23 Sx(2?)

1—z+ 2 ty

2
z z y
1-2 (1—z+y) 2"
Here too, G(z,y) is analytic at (p,7) (as before, because

p < land Sx(z?) is analytic at p). As a consequence, U (z)
has a singular expansion at p of the form

G(z,y) =

UR)=7 - - Z+d -Z*+¢-2°+0(2"),

again, with Z := /1 — z/p. Around p, we have
U(z) = G(z,5x(2))

Glp+(z—p)7—c-Z+0(Z%)

G(p,m) + Gylp,7) - (—cZ) + O(Z?),

in the last step, using the Taylor expansion of the bivariate
function G(z,y). Hence by coefficient identification, we
have 7/ = G(p, T) and more importantly ¢’ = ¢ - G,(p, 7).
To show that ¢/ = 0, we start with

z
1—2’

Gy(z,y) =1—y—

to show that this cancels out at (p, 7).

Recall that at (z,y) = (p, 7) the equations y = F(z,y)
and 1 = Fy(z,y) are satisfied—this is consequence of
Eq. (#.36). These equations read

z
y=-—-:

—— - (exp (y+ B(2) — 1),

z
1= T -exp (y + B(z)).
Subtracting the second equation from the first equation we
gety—1 = z/(1—2z), which, due to our simplification of £ at
the beginning of this section, is equivalentto y—1 = —L(z),
itself also equivalent to 0 = 1 —y — L(z) = Gy (2, y).

Since this equation holds at (p,7), we conclude that
Gy(p,T) = 0, to the effect that ¢ = 0.

We now need only verify that the leading singular term
of U(z) isindeed Z3 (i.e., we want to make sure that ¢’ # 0).
Were that not be the case, we would have U (z) = 7+d'-Z2+
O(Z 4), and using previously mentioned transfer theorems,
this would imply that [2"]U(2) = o(p~™ - n=5/2).



Note that an unrooted 3LP graph ~ with n vertices
gives rise to not more than n objects in Sx (precisely it
gives rise to n(y) objects in Sx, where n(y) is the num-
ber of dissimilar vertices of « that are adjacent to a star-
leaf in the split-decomposition tree), hence n - [2"|U(z) >
[2""1Sx(z). Since [z"'|Sx(2) is O(p~"n"3/2) we

conclude that [z"]U(z) = Q(p~"n~5/2), and thus ¢ #
0. Using transfer theorems we conclude that [z"]|U(z) ~
3e’ —mn,—5/2
/=P

Leading constant. Let us now briefly explain how
to compute the constant e/, and more generally, how to
accurately estimate the coefficients ug,uq,...,u; in the
singular expansion of U(z) to any fixed order k:

U(z) =up+uiZ + - +uZ¥ +0,,,(2%),

with Z = /1 —z/p. The first step is to estimate the
coefficients in the singular expansion of Sx (z), of the form

Sx(z)=co+c1Z+ -+ cxZ" +0,,(2%),

For any fixed m (with the notations F (m)(z, y), plm, 7m]
Jr C[m]Z + c[m]ZQ
-+ cgcm] Z* . and consider the equation

introduced above), we let y[m] = rlm
[m] ZS
C3

—ytml ¢ plml(plml . (1 — 72) 4lmly = o,
which we expand order by order in Z, each coefficient [Z?]
in H = —ylm 4+ Fimplml (1 — 22) ylm]) being a
certain polynomial expression in /™, ... 7ckm}. As it turns
out, the coefficient [Z°]H and [Z!]|H are 0, the coefficient
[Z%)H is of the form 1(c[™)2 — a with a ~ 1.46797,
which gives c[ m —v2a =~ —1.71346, and then for
3 < i < k+1 the coefficient [Z] H is of the form ¢[™ ™) —
P-(c[1 ], ...,¢; ) for a certain explicit polynomial P;. This
allows us to solve iteratively for the constants c[ m] gm]7 o
we find " ~ 1.45297, ™ ~ —0.33156, etc, and we
observe exponentially fast convergence as m increases.
Then, to obtain the coefficients u;, we simply use the
explicit expression U (z) = G(z, Sx (z)), which ensures that
the singular expansion of U(z) is the same as the singular
expansion of Sx (z)- (1— 1% — 3 Sx(z)). Expanding order
by order in Z, we find that each u; is a polynomial expression
in c¢q,...,c;, which allows us to compute the u;’s from the
¢i’s, giving €' = ug ~ 1.67688.

clm

4.2 Distance-hereditary graphs. Since the following
analysis is very similar in execution to that of the 3-leaf po-
wer graphs in the previous subsection, we will omit details.
We begin, as before, with the rooted case. Remark E]
notes that K and 8¢ play symmetric roles and hence have
the same generating function, which we denote by K (z). We

denote by S(z) the generating function of 8§ x. Then from
Eq. (3.24), we obtain

(z + 2K (2))?

RS e T

If we define A(z) = z 4+ K(2) + S(z) =

z 4 2 .
% then Eq. (3.23)) yields

z) = exp (Z %A(zl)) —1—A(z),

i>1

z+ K(z) +

so that y = K (z) satisfies the functional equation
(z +2y)?

s gy) P(BR)),

Y = exXpxy (Z+y+

with the notation exp4(t) = >, f—,, and with B(z) :=

i ().

As in Section {.1] this is an equation of the form
y = F(z,y), with F'(z,y) a power series with non-negative
coefficients and with nonlinear dependency on y. Thus, if
we denote by p the radius of convergence of K(z), then
K (z) converges to a finite positive constant (denoted by 7)
when 2z tends to p from below; and since y = K (z) does not
diverge when z tends to p, then we must have 1 — z — 2y >
0 at (z,y) = (p,7) (no cancellation of the denominator
appearing inside the exponential). Moreover, since the
number of distance-hereditary graphs grows exponentially
with n, we must have p < 1, from which we easily deduce
that B(z) is analytic at p, and that F'(z,y) is analytic at
(p, 7). Hence, as in Section the Drmota-Lalley-Woods
theorem ensures that K (z) has a singular expansion of the
form

K(z)=71—c-Z+0(Z%, with Z = /1 - z/p,
and has an analytic continuation in a A-domain. Hence we
can apply transfer theorems to obtain the asymptotic estimate
[z"K(z) ~ %p’”n*’m. Again we can use an iterated
scheme to evaluate the constants with increasing precision,
we obtain p ~ 7.249751250. . ..

For the unrooted case, similarly as for 3LP graphs, we
express the generating function U (z) of unrooted DH graphs
in terms of K (z), and verify that the leading singular term is
of order Z3. Again we have to use the fact that K (z) admits
a singular expansion up to terms of order Z2, of the form

K(z)=1—cZ+dZ*+eZ%+0(Z%).
Eq. (3:25) of Theorem[]yields
U(z) =Tk (2)+Ts(2) +Ts—s(z)

—Tx_5(2) —Ts—s(2).



To express Tk (z) + Ts—s(z) in terms of K (z) we observe
that
K = SET>2(Z+ K+ 8)
= SET>3(Z 4+ XK +8) + SET2(Z + K + 8)
= Tk + SET2(X) 4 SET2(8) + SET2(Z)
+2ZXxK+ZxE+K xS
=Tk +Ts5_s+SET2(Z) + Z XK+ 2Z x84+ XK x 8.

Hence

Tk(z)+Ts-s(z) = K(2) —2K(2) — 25(2) — K(2)S(2).

Next, we have

Tr-s(2) = K(2) (K(2) + 5(2)),

and
Tss(2) = K(2)? + S(2)%
Finally, using S(z) = %, we find U(z) =
G(z,K(2)), where
2 (zt2y)
Gzy)=y—=z d—2_27

Remarkably, U (z) admits here a rational expression in terms
of z and K (z), which was not the case for 3LP graphs (recall
that the expression of U(z) involved a term Sx (22)).

Similarly as for 3LP graphs, we note that G(z,y) is
analytic at (p, 7), so that U(z) admits a singular expansion
of the form

U )=1—-dZ+d 7%+ 7% +0(2Y),
with the relation ¢ = ¢G(p, 7). We have
(14 2+ 2y)(4y*> + 42y + 22 =8y — 4z + 1)
(1—2—2y) ‘
In order to verify that this cancels out at (p, 7), we again use
the fact that at (p, 7), both equations y = F(z,y) and 1 =
2
F,(z,y) are satisfied. Defining R(z,y) = z +y + ngﬁgy,
these equations read (
y = exp(R(z,y) + B(2)) — 1 - R(z,y),
1= Ry(z,y) exp(R(z,y) + B(2)) — Ry(2,y).
Multiplying the first one by R,(z,y) and then subtracting

the second one (so as to eliminate exp(R(z, y) + B(z))), we
obtain the following equation, which is satisfied at (p, 7):

Gy(z, y) =

Ayt dzy+ 22 -8y —4z+1
o (1—2z—2y)3

We recognize the numerator as a factor in the numerator
of Gy(z,y), from which we conclude that G, (p,7) = 0,
and thus ¢/ = 0. Similarly as for 3LP graphs, the fact that
27K (2) = ©(p~"n=3/?) and ["U() > L[z"1]K(2)

ensures that €’ # 0, and [z"]U(z) ~ 437€%p*nn75/2,

0

5 Exhaustive Enumeration

Since most of the classes enumerated in this paper, in their
various flavors (labeled/unlabeled, rooted/unrooted, connec-
ted/disconnected), had no known enumeration, it became
useful to have some reference enumerations to confirm the
correctness of the grammars we deduced.

To this end, we have used the vertex incremental charac-
terization of the studied classes of graphs. These are surpri-
singly readily available in the graph literature, and provide
a convenient—and thankfully rather foolproof—way of fin-
ding reliable enumeration and exhaustive generation of these
classes of graphs: by brute force, you grow a set of graphs
using the vertex incremental operations, and eliminating iso-
morphic graphs as they are created. This is still exponential,
but allows for the exhaustive generation of all graphs up to
size n = 11,12. .. vertices, see Figure ] which is roughly
enough to check whether our grammars are accurate at two
depths of induction.

6 Conclusion

In this paper, we have taken well-known characterization
results by established graph researchers [20]], and have tur-
ned these characterizations into grammars, enumerations and
asymptotics—for two classes of graphs for which these were
previously unknown.

This illustrates that a tool long known by graph theorists
is a very fruitful line of research in analytic combinatorics,
of which this paper is likely only the beginning.

Future questions in this same line may focus, for ins-
tance, on the parameter analysis. For instance, Iriza [23| §7]
has already empirically noted, that in the split-decomposition
tree of an unrooted, unlabeled distance-hereditary graph, the
number of clique-nodes grows approximately as ~ 0.221n
and the number of star nodes grows approximately as ~
0.593n. This offers some intuition as to what is a typi-
cal “shape” for a distance-hereditary graph: many nodes
concentrated in a small number of cliques and then long fi-
laments in between as in Figure 2] But a more qualitative
investigation is required.

Iriza also brings to light an issue with our methodo-
logy. While the dissymmetry theorem solves many issues
that have frustrated many combinatoricians (the symmetries
when enumerating unrooted trees), it does not provide a sym-
bolic grammar for the unrooted graph classes. This prevents
us from efficiently randomly generating graphs [23, §3.2].
An interesting line of inquiry would be to refine the applica-
tion of cycle-pointing so that it is as straightforward as that
of the dissymmetry theorem.

Another promising avenue is to investigate whether
more complicated classes of graphs can easily be enu-
merated. Any superset of the distance-hereditary graphs
(which are the totally decomposable graphs for the split-
decomposition) will necessarily involve the presence of



prime nodes (internal graph labels which are neither star
graphs nor clique graphs). For instance, Shi [27] has done
an experimental study of parity graphs (which have bipartite
graphs as prime nodes).
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A Distance-Hereditary Grammar Simplification

The class DH, of distance-hereditary graphs rooted at a
vertex is originally specified by

DHy = Ze X (K + 8¢ + 8x)
K =SET>2(Z+ 8¢ + 8x)
8¢ = SET»2 (Z + X + 8x)
Sx =24+ XK +8¢c) x SET»1 (Z+K +8x).

The point of this appendix is to prove that the last equation
can be simplified to

8x = SEQ>3 (Z+XK +8¢).

Although we first provide a straightforward formal deriva-
tion, we then follow it up with an intuitive explanation.

Proof. Indeed, while the elements of a SET have symmetries
that are hard to take into account, this is not the case for sets
of size 1, therefore

SET>1 (U) =U+ SET;Q (U) .
By combining this fact with the definition of S,
8¢ = SET;Q (Z,—f—j(: +Sx),

we have that (parentheses in the right hand side purely for
emphasis)

SET>1 (Z+K +8x)=(Z+ K +8x)+ 8¢

hence,
Sx =(Z+K+8c) x (Z+K+8x +8¢)
=8x x (Z+ K +8¢)+ (Z+X +8¢c)°

we then proceed to manipulate this specification purely
symbolically, implying

Sx[1—(Z+K+8c)] = (Z+K+8c)°

and thus
(24K +8¢0)°
8x =
1-(Z+X+8¢)
= (Z+K +8¢)* x SEQ(Z + K + 8¢)
= SEQ>2 (2 + X +8¢).
Finally

Sx =SEQ2 (2 +X +38¢).
O

Remark 7. To understand this simplification from a combinatorial
perspective, imagine that we have a connected subsequence of star-
nodes connected by their extremities.

Without loss of generality, we can assume that all but the last
of these internal star-nodes have only two extremitie%the one
through which they are entered, and another one. We are then
either in the situation illustrated by Figure (in which the last
star-node of the subsequence only has one additional extremity) or
by Figure[3b] (in which the last star-node has several extremities).

This subsequence of adjacent star-nodes connected by their
extremities, translates to the grammar by a recursive expansion of
the 8x rule: each of these has a (Z + X + S¢) child for the center
of the star, and then one other children for the other extremity. This
is repeated until we have reached the last adjacent star-node in the
subsequence which can either have one or multiple extremities:

e If it has only one extremity, then this extremity connects to
either a leaf or to a clique, thus Z + K (Figure 3a).

e Otherwise, it has two or more undistinguished extremities, in
which case we can pretend that this set of extremities is a S¢
term (Figure [3D).

Recall that the original interpretation of S x,
8x = (Z+ K +8¢c) x SET>1 (Z+ X +8x),

is as follows: a distinguished center which can lead to either a
leaf, a clique, or a star-node entered through its center; and a set
of undistinguished extremities, each of which can lead to either a
leaf, a clique, or another star-node entered through an extremity.

The new interpretation follows the figures: we have a sequence
of (Z 4+ X + 8¢) terms for the center of each of the adjacent star-
nodes (and we have at least one such star-node), and finally another
such term to cover both possibilities, where the final star-node
either has one extremity or several. This is equivalent to having
a sequence of at least two of these terms, hence the simplified
equation.

T7The first star-node of the subsequence to have more than one extremity
is the “last” star-node of that particular subsequence. In particular, it is
possible for the subsequence to only have one single star-node.



Z+X+ 8¢
Z+ X+ 8¢

Z+X+ 8¢
Z+ X+ 8¢

SC‘
Z+X+ 8¢
Z+ X+ 8¢

2+ %
(a) This case occurs when the last star in the subsequence of (b) This case occurs when the last star in the subsequence of
adjacent stars has only one extremity. adjacent stars has at least two extremities (here, it has three).

Figure 3. Combinatorial intuition behind the derivation of AppendixEl
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Figure 4. All unrooted, unlabeled 3-leaf power graphs of sizes 1 through 5, beginning the enumeration: 1, 1, 2, 5, 12, ....
The coloring of the vertices illustrate one possible way to derive the graphs through vertex incremental operations sketched in
Sectionﬁ the newly added vertex is in blue, while the existing vertex it is added in reference to is in purple.
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