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Abstract

Walks on Young’s lattice of integer partitions encode many objects of algebraic
and combinatorial interest. Chen et al. established connections between such
walks and arc diagrams. We show that walks that start at &, end at a row shape,
and only visit partitions of bounded height are in bijection with a new type of
arc diagram — open diagrams. Remarkably, two subclasses of open diagrams are
equinumerous with well known objects: standard Young tableaux of bounded
height, and Baxter permutations. We give an explicit combinatorial bijection
in the former case, and a generating function proof and new conjecture in the
second case.

1. Introduction

The lattice of partition diagrams, where domination is given by inclusion of
Ferrers diagrams, is known as Young’s lattice. Walks on this lattice are impor-
tant since they encode many objects of combinatorial and algebraic interest. A
walk on Young’s lattice can be listed as a sequence of Ferrers diagrams such
that at most a single box is added or deleted at each step. A class of such
sequences is also known as a tableau family. It is well known that there are
several combinatorial classes in explicit bijection with tableau families ending
in an empty shape, in particular when there are restrictions on the height of the
tableaux which appear.

In this work we launch the study of tableau families that start at the empty
partition and end with a partition composed of a single part: A = (m), m > 0.
Additionally, they are bounded, meaning that they only visit partitions that
have at most k parts, for some fixed k. Remarkably, these have direct con-
nections to both Young tableaux of bounded height and Baxter permutations.
More precisely, we adapt results of Chen et al. [14] to the open diagrams of
Burrill et al. [12], and use generating results of Bousquet-Mélou and Xin [9]
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to give proofs that these two classic combinatorial classes are in bijection with
bounded height tableau families.

1.1. Part 1. Oscillating tableaur and Young tableauz of bounded height

The first tableau family that we consider is the set of oscillating tableaux
with height bounded by k. These appear in the proofs of results on partitions
avoiding certain nesting and crossing patterns [14], although they have a much
longer history. They appear in the representation theory of the symplectic
group, and elsewhere as up-down tableaux [6, 35]. Our first main result is
a new bijection connecting oscillating tableaux to the class of standard Young
tableau of bounded height. Young tableaux are more commonly associated with
oscillating tableau with no deletion step, but ours is a very different bijection.
This result demonstrates a new facet of the ubiquity of Young tableaux.

Theorem 1. The set of oscillating tableaux of size n with height bounded by k,
which start at the empty partition and end in a row shape A = (m), is in bijection
with the set of standard Young tableauz of size n with height bounded by 2k, with
m odd columns.

The proof of Theorem 1 is by an explicit bijection between the two classes,
an example of which is illustrated in Figure 1. A slightly less refined version of
this theorem was conjectured in an extended abstract version of this work [13].
Independently, but simultaneously to our own work, Krattenthaler [27] deter-
mined a different bijective map. Notably, he gave the interpretation of the m
parameter as the number of odd columns.

One consequence of the bijective map is the symmetric joint distribution
of two kinds of nesting patterns inside the class of involutions. Enumerative
formulas for Young tableaux of bounded height have been known for almost
half a century [20, 21, 5], but new generating function results can be derived
from Theorem 1, notably an expression which can be written as a diagonal of a
multivariate rational function. The analytic consequences of Theorem 1 are the
subject of Section 4.3.

1.2. Part 2. Hesitating tableaur and Baxter permutations

In the second part, we consider the family of hesitating tableaux. These
tableau sequences appear in studies of set partitions avoiding so-called enhanced
nesting and crossing patterns. We make a generating function argument to
connect hesitating tableaux that end in a row shape to Baxter permutations. A
first computational proof of this identity was produced by Xin and Zhang [36].
Here we offer a slight variation on the computation and provide the intermediary
details, using formulas of Bousquet-Mélou and Xin [9]. Specifically, the result
is the following.

Theorem 2. The number of hesitating tableaux of length 2n of height at most
two and ending in a row is equal to the number B,,+1 of Baxter permutations of
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Figure 1: The bijection behind Theorem 1. From top to bottom: standard
Young tableau of size n with height bounded by k and m odd columns; involution
diagram of size n with m fixed points and no enhanced (k+1)-nesting; involution
diagram of size n with m fixed points, and no (k + 1)-crossing, nor fixed point
below a k-crossing; matching diagram of size n + m with no (k + 1)-crossing
whose m last arcs are part of an m-nesting; oscillating tableau of size n + m
with height bounded by k, whose nth diagram is a row of length m. For this
particular example, n = 10 and k = m = 2.
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This theorem is a good candidate for a combinatorial proof. Baxter numbers
have been described as the “big brother” of the well known Catalan numbers:
they are the counting series for many combinatorial classes, and these classes
often contain natural subclasses which are counted by Catalan numbers. For ex-
ample, doubly alternating Baxter permutations have a Catalan number counting
sequence [24]. One consequence of Theorem 2 is a new two variable generating
tree construction for Baxter numbers.

Unlike the results in Part 1, our proof of Theorem 2 is not a combinatorial
bijection. One impediment to a bijective proof is a lack of a certain symmetry
in the class of hesitating tableaux that is present in most known Baxter classes.
A bijection would certainly be of interest, and in fact we conjecture a refinement
of Theorem 2, in Conjecture 21, which could guide a combinatorial bijection.

We begin with definitions in Section 2, and some known bijections in Sec-
tion 3. Then we focus on the standard Young tableaux of bounded height in
Section 4, followed by our study of Baxter objects in Section 5.

2. The combinatorial classes

We begin with precise definitions for the combinatorial classes that are used
in our results.

2.1. Tableauzx families

As mentioned above, a common encoding of walks on Young’s lattice is given
by sequences of Ferrers diagrams. We consider three variants. Each sequence
starts from the empty shape, and has a specified ending shape; the difference
between the different families here is when one can add or remove a box. The
length of a sequence is the number of elements, minus one. (It is the number of
steps in the corresponding walk.)

A vacillating tableau is an even length sequence of Ferrers diagrams, written
(A© .. X)) where consecutive elements in the sequence are either the
same or differ by one square, under the restriction! that A2 > \(2i+1)
and \(2i+1) < A(2i+2)

A hesitating tableau is an even length sequence of Ferrers diagrams, written
(MO X)) where consecutive differences of elements in the sequence
are either the same or differ by one square, under the following restrictions:

o if \(2) = \(Zi+D) then \(2i+1) < \(2i+2) (do nothing; add a box)

IRecall A < p means that \; < p; for all 4
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Figure 2: From top to bottom: a vacillating tableau of length 10; a hesitating
tableau of length 8; an oscillating tableau of length 11. In each case, the height
is bounded by 2.

o if A2) > \ZHD “then A2+ = A\(27+2) (remove a box; do nothing)
o if \2) < \ZHD) then (21 > \(2142) (add a box; remove a box).

An oscillating tableau is simply a sequence of Ferrers diagrams such that at
every stage a box is either added or deleted. Remark that the length of
the sequence is not necessarily even.

In each case, if no diagram in the sequence is of height k& + 1, we say that the
tableau has its height bounded by k. Figure 2 shows examples of the different
tableaux.

2.2. Lattice walks

FEach integer partition represented as a Ferrers diagram in a tableau sequence
can also be represented by a vector of its parts. If the tableau sequence is
bounded by k, then a k-tuple is sufficient.

The sequence of vectors defines a lattice path. For example, each of the
three tableau families above each directly corresponds to a lattice path family
in the region

Wi ={(z1,29,...,x) 1 x; € Lyx1 > 29 > -+ > a1 > 0}

starting at the origin (0,...,0). We can explicitly define three classes of lattice
paths by translating the constraints on the tableau families.
Remark. Twice in this article, in order to relate previous results, we use a
translation of this region and still identify it as Wj. The translated regions
are identical to the original up to a small shift of coordinates. This change is
detailed explicitly in the text (the allowed sets of steps are never changed).
Let e; be the elementary basis vector with a 1 at position ¢ and 0 elsewhere.
The steps in our lattice model are all elementary vectors, with possibly one
exception: the zero vector, also called stay step. The length of the walk increases
with a stay step, but the position does not change.
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Figure 3: From left to right: a Ws-vacillating walk; a Ws-hesitating walk; a Ws-
oscillating walk. The stay steps are drawn as loops. (These walks correspond
to the tableaux of FIGURE 2.)

A Wp-vacillating walk is a walk of even length in W}, using (i) two consec-
utive stay steps; (ii) a stay step followed by an e; step; (iii) a —e; step
followed by a stay step; (iv) a —e; step followed by an e; step.

A Wi-hesitating walk has even length and steps occur in the following pairs:
(i) a stay step followed by an e; step; (ii) a —e; step followed by a stay
step; (iii) an e; step follow by a —e; step.

A Wy-oscillating walk starts at the origin and takes steps of type e; or —e;,
for 1 <4 < k. It does not permit stay steps.

Some examples are presented in Figure 3.

2.83. Open arc diagrams

Arc diagrams depict combinatorial objects as labelled graphs. They are a
useful format for visualizing and detecting certain patterns. Matchings and set
partitions are examples of classes that have natural representations using arc
diagrams. In the arc diagram representation of a set partition of {1,2,...,n},
a row of dots is labeled from 1 to n. A partition block {a1,as,...,a;}, or-
dered a1 < ag < ... < ay, is represented by the set of arcs

{(a1’a2)7 (a2>a3)7 SR (a’jfl’aj)}

which are always drawn above the row of dots. We adopt the convention that
a part of size one, say {i}, contributes a loop, that is a trivial arc (i,i). In
this work, we do not draw the loops, although some authors do. The set parti-
tion m = {{1,3,7},{2,8},{4},{5,6}} is depicted as an arc diagram in Figure 4.
Matchings are represented similarly, with each pair contributing an arc.
A set of k distinct arcs (i1,J1), .-, (ik, jx) forms a k-crossing if i; < ip <
< g < 1 < jo < -+ < jg. They form an enhanced k-crossing if i, <
io < o+ < dp < j1 < jo < -+ < jg. (By convention, an isolated dot of
the partition forms an enhanced 1-crossing.) They form a k-nesting if i; <
ig < o < i < Jg < -+ < jo < j1. They form an enhanced k-nesting if
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Figure 4: The set partition = = {1,3,7},{2, 8}, {4}, {5,6}

i1 <idg < v <ip < g <o < ja < j1 (As previously, ip = jr means that iy
is an isolated element in the set partition.). Figure 5 illustrates a 3-nesting, an
enhanced 3-nesting, and a 3-crossing.
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Figure 5: Patterns in arc diagrams. From left to right: a 3-crossing; an enhanced
3-crossing; a 3-nesting; an enhanced 3-nesting.

Recently, Burrill, Elizalde, Mishna and Yen [12] generalized arc diagrams
by permitting open arcs: in these diagrams each arc has a left endpoint but
not necessarily a right endpoint. The open arcs can be viewed as arcs “under
construction”. An open partition (resp. an open matching) is a set partition
(resp. a matching) diagram with open arcs. In open matchings, the left endpoint
of an open arc is never the right endpoint of another arc. Figure 6 shows
examples of such diagrams.

AN AR
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Figure 6: An open partition and an open matching.

We are also interested in crossing and nesting patterns in open diagrams.
Here we simplify the notation of [12]. A k-crossing in an open diagram is either
a set of k mutually crossing arcs (as before), or the union of k& — 1 mutually
crossing arcs and an open arc whose left endpoint is to the right of the last left
endpoint and to the left of the first right endpoint of the k — 1 crossing arcs. A
k-nesting in an open diagram is either a set of £ mutually nesting arcs, or a set
of k — 1 mutually nesting arcs, and an open arc whose left endpoint is to the
left of the k — 1 nesting arcs. We generalize enhanced k-crossings and enhanced
k-nestings in an open diagram similarly. Examples are given in Figure 7. If we
want to point out that a crossing (or nesting) has no open arc, we say that it is
a plain k-crossing (or k-nesting).



Figure 7: Patterns in open diagrams. From left to right: a 3-crossing; an
enhanced 3-crossing; a 3-nesting; an enhanced 3-nesting.

3. Bijections

8.1. Description of Chen, Deng, Du, Stanley, Yan’s bijection

The work of Chen, Deng, Du, Stanley and Yan [14] describes nontrivial
bijections between arc diagram families and tableau families. In this section we
summarize a selection of their results, and adapt it to our needs. Their main
bijection maps a set partition 7 to a sequence of Young tableaux?, the shapes
of which form a vacillating tableau, denoted by ¢(m). The exact same process
is used by Chen et al. to treat hesitating tableaux and oscillating tableaux, and
hence the main properties of the bijection are retained. We use their results for
the proof of Propositions 6 and 7.

We describe here their bijection ¢. Since we consider also partition diagrams
with open arcs reaching to the right, we find it more convenient to formulate
their mapping so as to read the partition from left to right, which makes us
adopt mirror conventions. Let 7 be a set partition of size n. We are going to
build from 7 a sequence of Young tableaux where the entries are decreasing in
each row and each column — the fact that we use decreasing order instead of
increasing order is a direct consequence of the change of the reading direction.
The first entry is the empty Young tableau. We increment a counter i by one
from 1 to n. A given step in the algorithm proceeds as follows. If i is the
right-hand endpoint of an arc in 7, then delete ¢ from the previous tableau (it
turns out that ¢ must be in a corner). Otherwise, replicate the previous tableau.
Then, after this move, if 7 is a left-hand endpoint of an arc (7, ) in 7, insert j
by the Robinson-Schensted insertion algorithm for the decreasing order into the
previous tableau. If 7 is not a left-hand endpoint, replicate the previous tableau.

The output of this process is a sequence of Young tableaux starting from,
and ending at, the empty Young tableau. The sequence of shapes is given by a
vacillating tableau and is denoted ¢(7).

Example. Consider the partition 7 from Figure 8. The number 1 is the left-
hand endpoint of the arc (1,5), but not the right-hand endpoint of any arc, so
the first three Young tableaux are @, @, (5] Similarly, 2 is the left-hand endpoint
of (2,4) but not a right-hand endpoint, so the two following Young Tableaux
are [5] [5]4] The number 3 is an isolated point, so the tableau is repeated

2A Young tableau is defined here as the filling of a Ferrers diagram with positive integers,
such that the entries in each row and in each column are strictly decreasing (usually the entries
are increasing; the reason for this change is explained later). The set of entries does not need
to form an interval of the form {1,...,n}.
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Figure 8: Top. The set partition 7 = {1,5},{2,4,6},{3}. Middle. The corre-
sponding Young tableau sequence. Bottom. The vacillating tableau given by

().

twice. The number 4 being the right-hand endpoint of (2,4) and the left-hand
endpoint of (4,6), we delete 4, then we add 6: we obtain [5], . The rest of the

sequence is given in Figure 8.

Given a vacillating tableau (&, A, ..., Aap—_1, @), there exists a unique way to
fill the entries of the Ferrers diagrams into Young tableaux so that it corresponds
to an image of a set partition. This has been proved in [14], and implies that ¢
is a bijection.

In an arc diagram, we say that the segment [¢,i+1] is below a k-crossing if the

arc diagram contains k arcs (41,751), .. -, (ik, Jx) such that i; <is < -+ <if <
and i+ 1 < j1 < j2 < -+ < jg. Similarly, the segment [i,i + 1] is below a k-
nesting if there exist k arcs (i1,J1), - - ., (i, jx) such that i1 < iy < - <1 <1

and i + 1 < jp < -+ < ja < j1. For instance, in Figure 8, the segment [3,4] is
below a 2-nesting but not below a 2-crossing, while the segment [4,5] is below
a 2-crossing but not below a 2-nesting. With this definition we can formulate
and prove a stronger version of [14, Theorem 3.2] (this property can also easily
be seen in the growth diagram formulation of the bijection — see [26]).

Proposition 3. Let w be a partition of size n and ¢(w) = (Ao, ..., A2n). For
every i € {1,...,n}, the segment [i,i + 1] of w is below a k-crossing (resp. k-
nesting) if and only if Aay; in ¢(m) has at least k rows (resp. k columns).

Example. We continue our example and verify that A(®) =T Jhas 2 columns
but not 2 rows, and accordingly [3, 4] is below a 2-nesting, but not a 2-crossing.

Proof. Let (Tp,...,Ta,) be the sequence of Young tableaux corresponding to
the partition 7. We use some ingredients from the proof of Theorem 3.2 of [14,
p. 1562]3:

1. A pair (4,7) is an arc in the representation of = if and only if j is an entry
in Toi, Toita, .-y Togj—1);

3Recall that one bijection is the mirror image of the other. So the indices differ between
[14] and here.



2. Let 0; = wijws . .. w, denote the permutation of the entries of T; such that
w1y, Wa, ..., w, have been inserted in (Tp,...,Ts,) in this order;

3. The permutation o; has an increasing subsequence of length k if and only
if the partition \; has at least k rows.

The following statements are then equivalent:
- The segment [i,i + 1] is below a k-crossing.
- There exist k arcs (i1,71),. .., (i, jr) in 7 such that

i1<i2<-~-<ik§iandi+1§jl<j2<-~-<jk.

- There exist k numbers j; < jo < -+ < ji that are entries of T5; such that
J1,J2,- .-, jx have been inserted in this order in (Tp, ..., Toy).

- There exist k numbers j; < jo < --- < jj such that jijs...jx is a subse-
quence of og;.

- The diagram Ay; has at least k rows.
The proof for k-crossings is similar. U

Considering all intervals [i,7 + 1] for 1 < i < n, we recover the statement of
Theorem 3.2 from [14].

Corollary 4 (Theorem 3.2 from [14]). A set partition = has no (k+1)-crossing
(resp. no (k+1)-nesting) if and only if no Ferrers diagram in the sequence ¢()
has k + 1 rows (resp. columns).

Remark. The crossing level of a set partition 7, denoted cr(w), is the maxi-
mal k such that 7 has a k-crossing. Similarly, the nesting level of a set partition
7, denoted ne(r), is the maximal k£ such that 7 has a k-nesting. Chen et al.
conclude from the previous corollary that the joint distribution of c¢r and ne
over all the set partition diagrams of fixed size is symmetric. That is,

) er(myne() _ 3 () gne(m)

7 set partition diagram 7 set partition diagram
of size n of size n
Let 7 denote transposition, the operation that transposes every Ferrers diagram
inside a vacillating tableau. Then ¢! o7 o ¢ swaps the crossing level and the
nesting level of a set partition. Moreover, note that ¢~! o 7 o ¢ preserves the
opener/closer sequence, i.e., if the number ¢ is an isolated point (resp. a left
endpoint, a right endpoint, a left and right endpoint at the same time) in a
partition 7, then 7 is an isolated point (resp. a left endpoint, a right endpoint,
a left and right endpoint at the same time) in ¢~ o 7 0 (7).

10



3.2. Bijections with open partitions

Next we describe a generalization of the bijection of Chen et al. to the class
of tableaux ending at a row shape. We thereby link their bijection to the classes
of Section 2.

Proposition 5. A bijection can be constructed between any two of the following
classes:

1. the set of open partition diagrams of length n with no (k + 1)-crossing,
with m open arcs;

2. the set of open partition diagrams of length n with no (k+1)-nesting, with
m open arcs;

3. the set of vacillating tableaux of length 2n, with maximum height bounded
by k, ending in a row of length m;

4. the set of Wy-vacillating walks of length 2n ending at (m,0,...,0).

Proof. Bijection (1) < (3). We close the open diagrams in a canonical way,
and then apply ¢. More precisely, let m be an open partition diagram of length
n with m open arcs and no (k+1)-crossing. We build a new partition diagram 7
of length n +m without open arcs by closing the m open arcs of 7 in decreasing

order. That is, if i1 < i3 < -+ < 4,, denote the positions of the m open arcs
of 7, the partition 7 is the closure, obtained by replacing the m open arcs with
the arcs (i1,n+m), (ia,n+m —1),..., (im,n+ 1), as shown in Figure 9. Note

that the open arcs are closed in such a way that no new crossing is created.

123456789 123456789101112

Figure 9: Left. An open partition diagram, 7, with 3 open arcs. Right. The
corresponding closed partition diagram 7 ending with a 3-nesting, obtained by
closing the 3 open arcs of 7 in reverse order.

The m last elements of 7 form the end of an m-nesting. Consequently, each
crossing of T has at most one element inside {n + 1,...,n + m}; so the preimage
of any f-crossing of T is also an ¢-crossing. As 7 has no (k + 1)-crossing, the
diagram 7 has no (k + 1)-crossing.

Let ¢(7) = (Mo, .-+, A2(nt+m)) be the image of 7 under ¢. By Corollary 4,
the height of this vacillating tableau is bounded by k. Moreover, the segment
[n,n+1] in 7 is below an m-nesting but not below a 2-crossing. By Proposition 3,
it means that Ay, is a column with at least m rows. Since ¢(7) ends with an
empty diagram and one can delete at most one cell every two steps, Ag, has

11



exactly m rows. Thus, (A, ..., Aap) is a vacillating tableau of length 2n, with
maximum height bounded by k, ending in a column of length m.

The transformation is bijective: a vacillating tableau (Mg, ..., A2, ) from the
set (3) can be concatenated with ((m — 2),(m — 2),...,(1),9,2), where (j)
denotes the partition of j only composed of a single part of size j. If we change
its preimage under ¢ by opening the arcs ending in {n + 1,...,n 4+ m} into m
open arcs, we recover the initial open diagram .

Bijection (2) < (3). The previous bijection is adapted with an additional
application of the transposition operator 7.

Bijection (3) < (4). This is a straightforward consequence of the encod-
ing. As the vacillating tableaux end at a row of length m, the endpoints of the
walks must be the point (m,0,...,0). O

The open diagram case inherits many properties from the closed diagram
case. For example, the statistics of crossing level and nesting level are equidis-
tributed. Also, the problem of finding a direct bijection between open partitions
with no k-crossing and open partitions with no k-nesting without going through
the vacillating tableaux seems to be as difficult as the closed case.

However, the nesting level and the crossing level do not have symmetric joint
distribution for open partitions. This constitutes a difference with the (closed)
partition diagrams.

Furthermore, the other generalizations of Chen et al. — specifically the ones
that concern the hesitating and oscillating tableaux — are similarly adapted by
the same canonical closing strategy. Consequently, the proofs of the following
results are almost identical to the vacillating case.

Proposition 6. The following classes are in bijection:

1. the set of open matching diagrams of length n with no (k + 1)-crossing,
with m open arcs;

2. the set of open matching diagrams of length n with no (k+1)-nesting, with
m open arcs;

3. the set of oscillating tableauz of length n, with height bounded by k, ending
in a row of length m;

4. the set of Wy-oscillating walks of length n ending at (m,0,...,0).
Proposition 7. The following classes are in bijection:

1. the set of open partition diagrams of length n with no enhanced (k+ 1)-
crossing, with m open arcs;

2. the set of open partition diagrams of length n with no enhanced (k + 1)-
nesting, with m open arcs;

3. the set of hesitating tableaux of length 2n, with height bounded by k, ending
in a row of length m;

12



4. the set of Wy-hesitating walks of length 2n ending at (m,0,...,0).

Figure 1 depicts an example of application of Proposition 6: the fourth
object is an open matching, and the last object is the tableau image of this
open matching.

4. Young tableaux, involutions and open matchings

4.1. Bijections

We can now prove our first main result, namely Theorem 1. Our strategy is
to use Proposition 6, and prove the following result, from which Theorem 1 is
a straightforward consequence.

Proposition 8. The set of standard Young tableaux of size n with height
bounded by 2k and m odd columns is in bijection with the set of open matching
diagrams of length n, with m open arcs and with no (k + 1)-crossing.

As far as we can tell, the essential connections behind this theorem were
first conjectured by Burrill [11]. First, she experimentally observed the equiva-
lent connection between standard Young tableaux of bounded height and open
matchings with no (k+1)-nesting [11, Conjecture 6.2.1], and then she proved the
correspondence between open matchings with no (k + 1)-nesting and oscillating
tableau ending in a row [11, Section 7.3].

The following lemma presents a classic property of the Robinson-Schensted
correspondence (see for example [33]).

Lemma 9. (Robinson-Schensted correspondence) The set of standard Young
tableauz of size n with height bounded by k and m odd columns is in bijection
with involutions of size n with m fixed points and no decreasing subsequence of
length k + 1.

As a first step, Lemma 9 yields combinatorial objects that are close to open
matchings. Indeed, involutions have a very natural arc diagram representation:
cycles (i j) are represented by an arc (¢, j), and fixed points are isolated dots.
Example. Let Y be the standard Young tableau from Figure 1. The im-
age of (Y,Y) under the Robinson-Schensted correspondence is the involution
(17)(39)(46)(5 10). Its diagram is the second object of Figure 1.

There is a simple correspondence between decreasing sequences in an invo-
lution and enhanced nestings in its arc diagram representation.

Lemma 10. Let k € Z>1. An involution has no decreasing subsequence of
length 2k — 1 if and only if there is no enhanced k-nesting in its arc diagram
representation.

Proof. Let a be an involution. If its arc diagram has an enhanced k-nesting
then « contains k cycles (i1 1), ..., (ig jr) that satisfy 41 < ig < -+ <ip < ji <
-+ < j1, which clearly induces a decreasing subsequence of length 2k — 1.

13
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Figure 10: Image of the involution (1 7)(3 9)(4 6)(5 10) under .

Conversely, assume that there exist 2k—1 numbers i; < i3 < --- < ig;_1 such
that a(igr—1) < - - < a(i1). fa(iy)—ix >0, theniy < - <ip < aiy) <--- <
a(iy): this means that (i1, «(iq)),..., (ik, @(ix)) form an enhanced k-nesting.
Otherwise, a(ix) —ix < 0. Thus a(iogr_1) < -+ < aliy) <ip < -+ < igr_1: the
arcs (a(iog—1),92k-1),- - -, (a(ix), i) form an enhanced k-nesting. O

By the two preceding lemmas, the proof of Proposition 8 is reduced to the
proof that involution diagrams of length n with m fixed points and no enhanced
(k4 1)-nesting are in bijection with open matching diagrams of length n with m
open arcs and no (k + 1)-crossing. This is established by the following lemma.

Lemma 11. There is a bijection v between involution diagrams and open
matching diagrams, such that for a an involution diagram and 8 = ¥(«), the
diagrams o and 3 have same length, the number of fixed points in « is the num-
ber of open arcs in B, and for any £ > 1 there is an enhanced £-nesting in « if
and only if there is an {-crossing in B. In addition the opener/closer sequence
of a (seeing fized points as openers) is the same as the opener/closer sequence

of B.

Proof. We describe 1, a bijective map between involutions and open matchings.
It is formed as a composition of other maps. We have already defined ¢, the
bijection from set partition diagrams to vacillating tableaux from Section 3,
and 7, the transpose action which can be applied to any tableau sequence. We
add ¢, the operation that changes every isolated dot in an involution diagram
into an open arc. Let 1 be the composition ¢ o ¢! o 7 0 ¢. Figure 10 shows an
example of the action of .

Since ¢, 7 and ¢ can all be reversed, the mapping v is bijective. Moreover,
recall from the remark at the end of Subsection 3.1, ¢~ o 7 0 ¢ preserves the
opener-closer sequence. Therefore, every involution of size n with m fixed points
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is mapped under v to an open matching diagram of size n with m open arcs, such
that the opener/closer sequence is preserved (seeing fixed points as openers).

Assume that an involution « has an enhanced ¢-nesting (i1, j1) ... (i¢, j¢). If
i¢ # j¢, this enhanced nesting is also a plain f-nesting. By the remark at the
end of Subsection 3.1, we know that ¢~! o 7 o ¢() has an f-crossing, so the
same holds for ¥ («).

If iy = jg, then iy is a fixed point of @ and hence an open arc in ¥ («). More-
over, the segment [i¢, iy + 1] is below the (¢ — 1)-nesting (i1,71) ... ({r—1, Je—1)-
So, by Proposition 3, the 2i,-th diagram of ¢(«) has at least £ — 1 columns.
The 2ip-th diagram of 7 o ¢(«) has then at least £ — 1 rows, and so [ig,i¢ + 1]
is below a (¢ — 1)-crossing in ¥ (a). Thus, 4, is in ¥ () an open arc below a
(¢—1)-crossing. Hence the open matching ¢(«) has an ¢-crossing. The converse
is proved similarly.

In summary, v is a bijection between involution diagrams of size n with m
fixed points and no enhanced k-nesting and open matchings diagrams of size n
with m open arcs and no k-crossing. O

We direct the reader to Figure 1 if they want a complete illustration of
Theorem 1 or Proposition 8.

Krattenthaler’s bijection

As mentioned in the introduction, Krattenthaler has also described [27] an
explicit bijective map to proves Theorem 1. This map, like ours, relies on the
Robinson-Schensted correspondence, but in addition it relies on jeu de taquin*
moves. These two maps share some similarities, although they do not appear
to be linked by any simple map. In fact, both bijections can be described in
terms of either arc diagrams or growth diagrams, since growth diagrams are
an alternative encoding of Chen et al.’s bijection. Krattenthaler uses growth
diagrams [27].

The difference between the two bijections concerns the treatment of fixed
points which appear when the standard Young tableaux are viewed as invo-
lutions. More precisely, the two bijections put into correspondence involutions
with m fixed points whose diagrams contain no enhanced (k4 1)-nesting (second
object of Figure 1), and matchings whose diagrams have no (k + 1)-nesting and
the m last arcs form the end of an m-crossing (second-last object of Figure 1).
Roughly, both bijections reorganize the set of the m fixed points, and close them
to form an m-crossing at the end — and all this is done without creating any
(k 4+ 1)-nesting. This is however realized in very different ways.

Unlike ours, Krattenthaler’s bijection “preprocesses” standard Young ta-
bleaux with jeu de taquin to complete odd columns. Already at this stage,
the arc diagrams are quite different. Notably, if we translate Krattenthaler’s
preprocessing to the world of arc diagrams, we observe that every fixed point
has been closed, and it is not the last, but the first m arcs of this diagram

4Jeu de taquin is an operation on Young tableaux invented by Schiitzenberger [31].
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that are part of an m-crossing. The required form is obtained by reversing this
image.

Since the mechanisms of jeu de taquin and the ones of Chen et al.’s bi-
jection are quite different, we think there is no obvious connection between
Krattenthaler’s bijection and ours. This is observable in practice: the bijec-
tions significantly differ on numerous examples. For example, Krattenthaler’s
bijection applied to the standard Young tableau of Figure 1 gives the sequence

o 0,0, . HY HP HY oo o, | 0@,

which differs in several positions.

Changing “even” by “odd”

Remark that standard Young tableaux with height bounded by an odd num-
ber are also characterized in terms of open matching diagrams (but instead
constrained by the plain nestings or crossings):

Proposition 12. The following classes are in bijection:

(i) the set of standard Young tableauz of size n with m odd columns and height
bounded by 2k — 1;

(ii) the set of involutions of size n with m fized points and no decreasing
subsequence of length 2k;

(iii) the set of open matching diagrams of length n with no plain k-crossing
and with m open arcs;

(iv) the set of open matching diagrams of length n with no plain k-nesting and
with m open arcs.

Proof. The Robinson-Schensted correspondence (specifically, the property de-
scribed in Lemma 9) gives a straightforward bijection between (i) and (ii). Then,
seeing isolated points as open arcs, it is easy to adapt Lemma 10 in order to
show the correspondence between (ii) and (iv). Finally the bijection between
(iii) and (iv) is given by ¢~ o7 0 ¢, where ¢ and T are defined in Section 3. [

4.2. A new symmetric joint distribution for involutions

While looking for the previous bijection we found a surprising symmetry
property for involutions, which is now presented. Section 3 contained the def-
inition of nesting level. In the context of involution diagrams, this notion can
be refined in two different ways, depending on whether we regard involution
diagrams as enhanced set partition diagrams or as open matchings.

The enhanced nesting level of an involution «, denoted ne (), is the maxi-
mal number of dots in an enhanced nesting of « (note that k& marks the number
of dots not number of arcs). Pursuant to Lemma 10, the number ne| () is also
the length of the longest decreasing subsequence of . Similarly, we define the
open nesting level of an involution «, denoted ne. («): after transforming the
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diagram of « into an open matching by changing every isolated point into an
open arc, the open nesting level of « is the maximal number of dots inside a
nesting.

Remark that an enhanced nesting and a nesting in an open diagram are
identical if both have an even number of dots; these are then plain nestings.
The difference is made when the number of dots is odd, say 2k + 1. In this case,
an enhanced nesting is made of a dot below a plain k-nesting, while a nesting in
an open matching is made of an open arc to the left of a plain k-nesting. This
justifies the notation ne, and ne.. Figure 11 compares the two patterns.

Example 13. The open nesting level of the involution (1 7)(3 9)(4 6)(5 10),
depicted in Figure 11, is 5: the numbers 2,3,4,6,9 form a nesting if we trans-
form the dot 2 into an open arc. However the enhanced nesting level of the same
involution is 4: there is no dot below any 2-nesting.

SN AN

Figure 11: Left. An enhanced 3-nesting with respectively 5 and 6 dots. Right.
A 3-nesting with respectively 5 and 6 dots (in an open matching).

A (weak) link between the two statistics can be easily derived from the
preceding study, as stated in the following proposition.

Proposition 14. There is a bijection 0 from involution diagrams to involution
diagrams such that for a any involution diagram, 8 = 0(«), and € > 1, there
18 an enhanced (-nesting in « if and only if there is an £-nesting in the open
matching obtained by changing every fized point in B by an open arc. In other
words, there exists a bijection 8 between involutions a such that ne| (o) = 2k —1
or 2k and involutions 8 such that ne_(8) = 2k — 1 or 2k.

In addition, 0 preserves the length, the number of fixed points and the opener-
closer sequence (viewing fized points as openers).

Proof. We define 0 as the composition of the mapping v described by Lemma 11
(from involution diagrams to open matching diagrams) and the correspondence
between (1) and (2) in Proposition 6. All the stated properties of 6 are direct
consequences of Lemma 11 and Proposition 6. O

Note that an enhanced nesting is preserved when the diagram is reflected.
This is not true for an odd nesting in an open diagram, because the isolated
point must be to the left of the nesting. Despite the fact they do not share this
property, the enhanced nesting level and the open nesting level have symmetric
distribution, as stated in the following theorem.
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Theorem 15. The statistics ne. and ney have a symmetric joint distribution
over all the involutions of size n with m fized points, i.e.,

§ e (a)yne¢(a) — E ynek (a)zneu(a)'
a involution a involution
of size n of size n
with m fized points with m fized points

Remark. The bijection 6 from Proposition 14 does not swap the statistics ne;
and ne._. For instance, the involution o = (1 5)(2 3) of size 5 is mapped to the
involution 8 = (2 3)(4 5): we have nej(a) = ne. (o) = 4 but ne_(8) = 3 and
(even worse!) ne () = 2. Nonetheless, the existence of the function 6 (and
more particularly the fact that an involution with enhanced nesting level 2k — 1
or 2k is mapped under 6 to an involution with open nesting level 2k — 1 or 2k)
is sufficient to prove Theorem 15.

Proof. Consider all involutions of fixed size, with a fixed number of fixed points.
Let a; ; be the number of involutions « in this class such that nej(a) = ¢ and
ne, (a) = j. By Proposition 14, the bijection # maps involutions « such that
ne (o) = 2k — 1 or 2k to involutions § such that ne. (8) = 2k — 1 or 2k; hence

Z (agk—1,; + azg, ;) = Z (@i2k—1+ Gizk) - (2)

§>0 i>0

We can simplify the expression in Equation (2) as the values ne| («) and ne. («)
can only differ by at most one for a given involution «. Indeed, if £ denotes the
maximal number of arcs inside a nesting of an involution, the open nesting
level and the enhanced nesting level must equal either 2¢ or 2¢ + 1. Therefore,
a;; = 0 except for pairs (7,7) of the form (2¢,2¢), (2¢,2¢ + 1), (2¢+1,2¢) or
(204 1,2¢+ 1). Equation (2) can be thus rewritten as:

A2k —1,2k—1 + A2k —1,2k—2 + G2k 2k + G2k 2k+1
= G2k—2,2k—1 T A2k —1,2k—1 + Q2k,2k + A2k+1,2k,

or after simplification

A2k 2k4+1 — A2k4+1,2k = A2k—22k—1 — A2k—1,2k—2-

In other words, the sequence (agk 2k+1 — Gok+1,2k) is constant over all k& > 0.
But since it equals 0 for £ = 0, we have for every k > 0,

A2k 2k+1 = A2k+1,2k-

The other terms a; ; such that ¢ # j vanish, so the last equality is sufficient to
conclude the proof. O

The previous proof is simple but not constructive: can we describe an invo-
lution (on involutions) that swaps the statistics ne.. and ne;? The answer is
yes, and a description can be given in terms of iterations of 8, where 6 is the
mapping defined by Proposition 14.
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Figure 12: Schematic representation of typical orbits under . The white circles
represent the elements of Ay 2541, the gray circles the elements of Asy 1 2, and
the small points are the remaining elements.

Lemma 16. Let 1) be the (th iteration of 0 and A; ; be the set of involutions
a such that nej(a) =i and ne_(a) = j.
For every a in Agg opy1 with k > 0, there exists m > 1 such that

9(2)(04) ¢ A2k72k+1 U A2k+172k for le {1, ee,m — 1},

and 0™ (o) € Agky1,2k. Moreover, for every o in Aggy1 2k, there exists m’ > 1
such that 0(4/)(0/) ¢ Aogokt1UAskt1 0k for £ € {1,...,m' =1}, and 0(’”/)(0/) €
Asp opy1.

In other words, in the orbit of any involution under 6 (this orbit is cyclic
since 8 is bijective and the set of involutions of fixed size is finite), the elements
of Aag o1 U Aogt1 2k alternate between Aoy ok1+1 and Aspi1,2k-

An example of this correspondence is illustrated in Figure 12.

Proof. Consider i > 0 such that () (o) = « (such an i exists as 0 acts bijectively
on the finite set of involutions of a fixed length). Since ne. () = 2k + 1, we
have ne; (00~ (a)) > 2k.

Let m denote the smallest j > 0 such ne () (a)) > 2k. We have then
ne (0™~ (a)) < 2k. Using the properties of 6 we know that ne, (8™ (a)) <
2k, hence ney (0™ (a)) < 2k + 1. As ne| (0™ (a)) > 2k, we must have

ney (60" (@) = 2k + 1 and nec (67" (a)) = 2.

Moreover, by minimality of m, there is no £ € {1,...,m — 1} such that
0 (a) € Aggi1,2k. For the same reason, there is no £ € {1,...,m — 1} such
that ) (a) € Aoy 2141, since by the property of preservation of 8 it would imply
ney (=Y (a)) > 2k.

The property on o’ can be proved by symmetry. O

The previous lemma sets out how to build the desired involution. Essentially,
from an involution of Aay or41, we iterate 6 until obtaining an involution of
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Agjt1,26. 1f, on the other hand, the involution belongs to Aggy1 21 We want to
go backward, so we iterate #~! until obtaining an involution of Aog2k+1- If an
involution does not fall under one of the previous forms, it necessarily belongs
to a set of the form Ay, and we can then set this involution as a fixed point.

Proposition 17. Let «a be an involution and A;; be the set of involutions o
such that ney (o) =4 and ne.(a) = j. If o € Agg ok+1, Set mq as the smallest
integer m such that Q(m)(a) € Aopyi12k- If o € Agpy1,2k, set mq as the opposite
of the smallest integer m such that (=™ () € Agk op+1. Otherwise, set my as
0.

The mapping o — 00™) () is an involution on the class of involutions that
exchanges the statistics ne| and ne.. It preserves the size of the involutions, the
number of fized points and the opener/closer sequence (considering fized points
as openers).

Remark. What about the open crossing level of an involution, that is to say
the maximum number of dots contained in a k-crossing, when this involution is
transformed into an open matching? It is easy to see that the open crossing level
shares the same distribution as the open nesting level or the enhanced nesting
level (in particular via the bijection ¢~' o 7 o ¢). However, this statistic does
not have a symmetric distribution, whether it is with the open nesting level or
with the enhanced nesting level.

4.3. Consequences of Theorem 1

There are two immediate generating function consequences to Theorem 1.
The first is a non-trivial determinant identity that can be deduced from the
equivalence of these two classes, and the second is a diagonal expression for the
generating function of Young tableaux of bounded height. Both use enumeration
results of Weyl chamber walks [19, 23].

4.8.1. Consequence: The combinatorics of a determinant identity

The exponential generating functions of both Young tableau of bounded
height and of Wy-oscillating walks have both already appeared in the literature,
and both in a surprisingly similar form. Theorem 1 thus yields an interesting
determinant identity. Both involve hyperbolic Bessel function of the first kind
of order j that we modify them slightly. Denote by b;(t) the sum

t2n+j

Using the generating function expression for Young tableau of bounded
(even) height developed by works of Gordon, Houten, Bender and Knuth [20,
21, 5], which depends on the parity of k, and Grabiner-Magyar’s [23] formula
for the exponential generating function of the Wy-oscillating walks of length n
between two given points we deduce
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det[b;—j+bitj-1]1<ij<k
k—1 2k—1—2u
=Y (1" D bedetbij — bra-i—jloi<k—Litu1<i<h-1.
u=0

l=u

The expression on the right hand side follows from the formula of Grabiner
and Magyar’s formula, which starts as an infinite sum but simplifies to a finite
sum after applying the identity b_, = b, and a co-factor expansion of the
determinants.

In fact, Krattenthaler [27] notes that one can be deduced from the other by
application of the symmetric function analysis of Goulden [22]. The bijective
proof here may give more insight to the intermediary technicalities, and should
be of a different flavour than those of Stembridge [34], which involves sets of
non-intersecting paths.

4.8.2. Consequence: A Diagonal Expression

The second consequence is an expression of the generating function for stan-
dard Young tableaux as a diagonal of a rational function. A diagonal Af of
a formal power series f is the univariate subseries defined by the sum over
(i07i13 v 7Zk) € NkJrl

A Z a(io,il,...,ik)zéozil...z,i’“:Za(n,n,...,n)z".

TR n

These expressions are of interest for several reasons.

First, it can be used to determine the nature of the generating function.
Lipshitz [28] proved that the diagonal of a D-finite function® is D-finite. Since
rational functions are D-finite, diagonals of rational functions are also D-finite.

Gessel and Zeilberger [19] gave a formula for the generating function of
certain families of walks in Weyl chambers. The oscillating walks in Wy, fit into
their formalism, and the resulting expression can be manipulated into a diagonal
of rational function. This gives a new proof of the D-finiteness of the class of
standard Young tableaux of bounded height. The problem was first posed by
Stanley [32], and proved for generic k by Gessel in 1990 [18]. Gessel’s proof
requires symmetric functions, and also relies on the same closure properties
of D-finite functions. The subsequent proof by Goulden which uses the above
relations might be insightful.

Furthermore, there has been much recent activity on different computer
algebra approaches to diagonal expressions. For example, we can use the work
of [8] to determine bounds on the shape of the annihilating differential equation,
and potentially the methods of Pemantle and Wilson [30] could be useful to give

5A function is D-finite if the set of all its partial derivatives spans a vector space of finite
dimension.
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more precise asymptotic estimates for Young tableaux of bounded height. Their
work has been already applied to lattice path problems [29].

Theorem 18. The ordinary generating function, Yy (z) for Young tableaux of
height bounded by 2k satisfies the formula formula
22k71Yk (Z) —

ngil(ZSZz e 211272)(21 +1) H1§j<i§k(zi —2)(ziz; — 1) - HQSigk(zz'Q —-1)

—-A
1—z0(z1---2k)(z1 +Z1+ - 21 + Zk)

The proof of Theorem 18 is a direct application of Gessel and Zeilberger’s
formula for reflectable walks in Weyl chambers [19, 23] for the class of oscillating
walks in Wy.

5. Tableau sequences as Baxter classes

The combinatorial class that came to be known as Baxter permutations was
introduced in 1967 in a paper of Baxter [2] studying compositions of commuting
functions. A Baxter permutation of size n is a permutation ¢ € &,, such
that there are no indices ¢ < j < k satisfying o(j + 1) < o(i) < o(k) <
o(j) or o(j) <oa(k) <o(i) < o(j +1). We shall denote by B,, the number
of Baxter permutations of size n. They constitute entry A001181 of the Online
Encyclopedia of Integer Sequences (OEIS) [25]. The authors Chung, Graham,
Hoggart and Kleiman [15] found the explicit formula of Equation 1.

Many combinatorial classes have subsequently been discovered to have the
same counting sequence — for example triples of lattice paths [16] and plane
bipolar orientations [3]. A recent comprehensive survey of Felsner, Fusy, Noy
and Orden [17] finds many structural commonalities among these seemingly
diverse families of objects. Remarkably, there are intuitive bijections connecting
these classes, see for instance [7].

The generating function of hesitating tableaux in Proposition 7 (i) was de-
termined by Xin and Zhang [36]. Baxter numbers appear in their Table 3, and
they state that the equivalence between the two series is proved by verifying
that the B, satisfy the recurrence they deduce.

We give a slightly different proof and describe some of the consequences
of the result. For example, the classes of Proposition 7 have combinatorial
bijections between them, but they do not share many of the properties of the
other known Baxter classes. However, each of them does have a natural subclass
of objects enumerated by Catalan numbers, as many Baxter families also do.
(For example, non-crossing partitions are counted by Catalan numbers.)

Proposition 19. The following classes are in bijection:

(i) the set of hesitating tableaux of length 2n with height bounded by 2, starting
with empty diagram, ending in a row;

(ii) the set of open partition diagrams of length n with no enhanced 3-crossing;
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(1ii) Wa-hesitating walks of length n ending on the x-axis;
(iv) Bazter permutations of size n + 1.

Remark that Theorem 2 is simply the implication that (i) and (iv) from
Proposition 19 are in bijection. We prove the bijection between (iii) and (iv)
with a generating function argument, and deduce the other bijections using
Proposition 7.

5.1. Proof of Theorem 2

Theorem 2 has already been proved by Xin and Zhang [36] and in a previous
version of this work [13]. For the sake of completeness and pedagogical purpose
we provide here an alternative proof relying on explicit coefficient expressions
given by the Lagrange inversion formula, as computed in [9]. Moreover we
conjecture a stronger result that could be useful as a guide to prove the bijection
combinatorially.

We first set up some notation. Let T = %, and consider the ring of formal
series Q[z, Z][¢t]. The operator CT, extracts the constant term in x of series of
Q[z, 7][t]. We recall the work of Bousquet-Mélou and Xin [9]. Here, we only
require the k = 2 case from their work, and have consequently eliminated some
of the subscripts from the statements of their results. Also, note that their
definition of W5 is shifted one unit to the right, hence in the statement of their
results, walks start at (1,0) rather than (0,0).

Let @ denote the first quadrant in the plane, Q@ = {(z,y) : z,y > 0}, and
let W5 denote the region Wo = {(z,y) : > y > 0}. Walks taking n steps
that start at A and end at p and remain in @Q and W5 are, respectively, denoted
by q(A, p,n) and w(A, p, n).

Bousquet-Mélou and Xin’s Proposition 12 in [9], based on a classic reflection
argument, implies the following. For any starting and ending points A and p in
Wy, the number of Ws-hesitating walks going from A to p can be expressed in
terms of the number of Q-hesitating walks:

’LU()\,/},,TL) = Q()‘a IU/7n) - q(Aaﬁ7 ’I’L)

where (z,y) = (y,z). They define a simple sign reversing involution between
pairs of walks; the walks restricted to Wy appear as fixed points.

We consider the following two generating functions for @Q-hesitating walks
that start at (1,0) and end on an axis:

H(z;t)= > q((1,0),(i,0),2n)z" t"

i>1,n>0

and V(yit)= > q((1,0),(0,i),2n)y" t".

i>1,n>0

By applying the proposition we see immediately that the bivariate generating
function W (z;t) for Wa-hesitating walks that start at (0,1) and end on the z-
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axis satisfies the formula

W(x;t) = Z wo((1,0), (4,0),2n) 2't" = H(x;t) — V(z;t). (3)
i>1,n>0

Theorem 2 is equivalent to the statement

t)=> Bpt". (4)
Proof of Theorem 2. For i > 0, Bousquet-Mélou and Xin [9] show the following
Y =241

[T H (2;t) = Cth(l n x)x (z? - 2°Y? + 2°Y) (5)
i+1 N Y i 2y2 4z
[TV (25t) = CTl.t(l_HC) (@ - PY? + 7). (6)

Thus, we deduce

[T W (z;t) = [2"THH (2;t) — V(2;t)

Hence we have

where
T = CT Y (@ - o) = Tt (14 2+ 2%+ 2% + )
&t +x) t(1+ ) )
. YS
= 4—0—1 _ iy T
Ut) g 21t =C i
) 7 Y2
V) LY i@ —e) = Ol (1o —a® —a').

i>0
Here, we have applied the following identity from [9] (valid for k > 1 and ¢ € Z)

Yk Yk
CTy———3" = CT, SRS
1+ 1+

Hence, defining A, 5 (t) = CT, t(1+ )xé we can collect terms to obtain

4 3

W(Lit) =Y Apa(t) + Arg(t) = Y Ara(t). (7)

r=0 r=0

It is shown in [9] that the Lagrange inversion formula yields, for n € N,

[t Aek(t) = an(l,k, ),

JEZ
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with

. E (n+1\/n+1 n
“"(Z’k"”ml( j >(j+k)<j—f>'

Here we apply the convention (?) =0forj<0orj>n.
Next, it is straightforward to detect and check the linear relations (valid for
n € Nand j € Z)

an(4a]~an_j +2) +an(1737j - 1) _an(2727n_j + 1) _an(3a2aj) = 07

an(1,1,n = j) 4+ an(2, 1j+1)—an02j

which respectively give A471(t) + Al,g( ) A2 2( ) 3,2
Az 1(t) — Ap2(t) = 0. Remarkably, expression (7) for W(

W(t) = Ao’l(t) + A3,1(t) — Al,g(t). (8)

) =
(t) = 0 and A1 1( )
1;t) simplifies to

For n > 1, the Baxter number B, is given by B, = ZjeZ bn,;, with b, ; =
n41\(n+1)\/n+1
%7 and again it is easy to detect and check that (for n € N and

1 2
jEZ)
an(oa 17]) + a/n<37 1a] + 1) - a/n(17 27]) = bn+1,j+17
so that Ag1(t) + As1(t) — Ai12(t) = >, ~¢ Bnt1t”, and thus [t"]W(1;t)
Boir. -

o

5.2. Consequence: a new generating tree

A generating tree for a combinatorial class expresses recursive structure in
a rooted plane tree with labeled nodes. The objects of size n are each uniquely
generated, and the set of objects of size n comprise the nth level of the tree. They
are useful for enumeration, and for showing that two classes are in bijection.
Theorem 2 yields a new generating tree construction for Baxter objects.

Several different formalisms exist for generating trees, notably [1]. The cen-
tral properties are as follows. Every object 7 in a combinatorial class C is
assigned a label £(v) € Z*, for some fixed k. There is a rewriting rule on these
labels with the property that if two nodes have the same label then the ordered
list of labels of their children is also the same. We consider labels that are pairs
of positive integers, specified by {¢root : [i, 7] — Succ([i, j])}, where froot is the
label of the root.

Two generating trees for Baxter objects are known in the literature, and one
consequence of Theorem 2 is a third, using the generating tree for open partitions
given by Burrill et al. [12]. This tree differs from the other two already at the
third level, illustrating a very different decomposition of the objects. For the
three different systems we give the succession rules, and the first 5 levels of the
tree (unlabelled), in Figure 13.
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{[0,0]; [i, 5] — [2,4], [i +1,4]
[i,4), [i,5 + 1], ... 6,4 — 1], ifi >0
[i—1,4],[6—1,54+1],..., [i —1,4—1], ifi>0
6,5 — 1], [8 — 1,5 — 1] ifi > 0,andj > 0}.

Figure 13: The first five levels of each of the Baxter generating trees. They are
respectively from [7] [10] [12].

5.83. Conjecture: a refined identity of Baxter numbers

We have proved that the coefficients a(n,m) counting Ws-hesitating walks
of length 2n from (0,0) to (m,0) satisfy >, a(n,m) = B, 1, with B,, the nth
Baxter number. A bijective proof is yet to be found, and in that perspective a
natural question is whether the parameter m corresponds to a simple parameter
on another Baxter family. The family of Q-hesitating excursions, i.e. hesitating
walks in the lattice @ = {(x,y) : z,y > 0} starting and ending at the origin,
forms a good candidate, since we have strong evidence (though no proof) that
m is distributed as a certain parameter on that family. But let us show first
that it is indeed a Baxter family.

Proposition 20. The number of Q-hesitating excursions of length 2n is equal
to BnJr].

Proof. We show an easy bijection with the set 7, of non-intersecting triples
of lattice paths each of length n with steps either N = (0,1) (north steps) or
E = (1,0) (east steps), with respective starting points (—1,1), (0,0), (1,—1)
and respective ending points (k—1,n—k+1), (k,n—k), (k+1,n—k—1) for some
k €{0,...,n}. For 3 distinct points p1,ps, p3 in Z2 on a same line of slope —1,
ordered from top-left to bottom-right, define the distance-pair for (p1,p2,ps)
as the pair (¢,7) of nonnegative integers such that z(p;) = z(p2) — ¢ — 1 and
z(p3) = x(p2)+j+1. Let (Py, P>, P3) € T,,. Forr € {0,...,n} and ¢ € {1,2,3},
let pl(-T) be the point on P; after r steps, and let d(r) be the distance-pair for
(p§’"),p§'“),p§,’”)); note that d(0) = (0,0) and d(n) = (0,0) and that d(r) € ¢ for
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0 <7 < n. Moreover, for 0 < r < n, the vector 6(r) := d(r) —d(r — 1) is in
the set {(£1,0), (0,£1),(1,-1),(-1,1),(0,0)}, with two possibilities for being
(0,0) (whether the rth steps in Py, Py, P3 are all north or all east). Hence the

situation for the successive distance-pairs dy, ..., d, is exactly the same as for
the successive points of even rank in a @-excursion of length 2n. Figure 14 (left
and middle) illustrates this bijection. O

Figure 14: Left. A non-intersecting triple of lattice paths. Middle. A Q-
hesitating excursion. The stay steps are drawn as loops. The switch-multiplicity
of the walk is 3 (the white arrows indicate the marked steps). Right. A Wa-
hesitating excursion with 3 marked steps each leaving the diagonal. These three
objects are in correspondence.

We now define a secondary parameter m for Q-excursions. Let w be a Q-
excursion of length 2n where e, denotes the rth step, for 1 < r < 2n. Consider,
if any, the first step e;, that visits the region < y. Then consider, if any, the
first step e;, after e;, that visits the region z > y, and so on (switching between
x < yand x > y each time). We have here a stopping iterative process yielding,
for some m > 0, m marked steps e;,,...,¢e;, with iy < ... <'iy;mis called the
switch-multiplicity of the excursion. For instance, the switch-multiplicity of the
excursion at the middle of Figure 14 is 3. Note also that m < n since two marked
steps cannot be consecutive (the case m = n is reached by the unique excursion
where i1 = 1,45 = 3,43 = 5,..., i.e., the excursion that alternates pairs of steps
(0,1), (0,—1) with pairs of steps (1,0),(—1,0)). Denote by g(n,m) the number
of @-hesitating excursions of length 2n and switch-multiplicity m, and a(n,m)
the number of Wa-hesitating walks of length 2n from (0, 0) to (m,0).

Conjecture 21. Forn,m > 0, we have g(n,m) = a(n,m).

We have thought of the switch-multiplicity as a natural candidate because
of the analogy with a well-known bijection between excursions of length 2n on
the line Z and walks of length 2n starting at 0 on the half-line Z>o (with steps
in +1 for both types of walks), where a similar switch-multiplicity parameter
for excursions (this time switching between Z.g and Zs() corresponds to half
the ending abscissa of positive walks. However, what surprises us is that, while
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we have strong evidence the conjecture is true, we do not even have a proof for
m =1 (the case m = 0 is trivial).

Let us now slightly reformulate the conjecture so that we have Ws-hesitating
walks on both sides. Consider a @Q-hesitating excursion w of length 2n, with
€i,---,ei the steps given by the stopping iterative process (switching between
x <y and z > y). Accordingly w splits into a concatenated sequence of m + 1
parts mo, . .., Tm, where 7 is the part before e;, (7o =w if m =0), for 1 <h <
m, the part 7, is between e;, (included) and e;,,, (excluded), and for m > 1,
the part m,, is the ending part of W starting from e;,,. Each walk m; starts and
ends on the diagonal x = y and stays in x > y for ¢ even and in x < y for ¢ odd.
Hence, if we reflect each odd walk my;41 according to the diagonal z = y, we
obtain a Wa-hesitating walk from (0, 0) to (0,0) with m marked steps (the steps
at positions iy,...,4,) each entering the diagonal z = y. In addition, due to
recording the marked steps, there is no loss of information (the original excursion
can be recovered). This correspondence is depicted by Figure 14 (middle and
right). Hence, if we denote by a(n;i,j, m) the number of Ws-hesitating walks
of length 2n from (0,0) to (4, j) with 2n steps and m marked steps each leaving
the diagonal x = y, Conjecture 21 can be reformulated as:

Conjecture 22 (Reformulation). For n,m > 0, we have
a(n;m,0,0) = a(n;0,0,m).
Actually, an even stronger symmetry seems to hold:

Conjecture 23. For n,i,j > 0, we have
a(n;i,0, ) = a(n; §,0,4).

Note that there is clearly a one-to-one correspondence between steps leaving
the diagonal z = y and steps ending at the diagonal = y. Hence a(n;1, j, m)
is also the number of Wh-hesitating walks of length 2n from (0,0) to (4, ;) with
2n steps and m marked steps each ending at the diagonal x = y. In that form
it is easy to obtain a recurrence for the coefficients a(n;i,j, m) by considering
the effect of adding the last two steps (note that each of the two last steps has
to be unmarked if empty or not ending at x = y, and might be either unmarked
or marked if non-empty and ending at x = 1). Denote by S the set of steps
{(£1,0),(0,£1),(—1,1),(1,—1)} together with the two stationary steps s; and
s9, where s; simulates taking the pair (1,0) and (—1,0) as a single step, and
so simulates taking the pair (0,1) and (0,—1) as a single step. We have the
following recurrence (with ¢ the Kronecker symbol), from which we have been
able to check that Conjecture 23 holds for all n, 4, j with n < 56:

e forn =0,

a(n;i,jym) = 1 ifi=j53=m=0,

a(n;i,j,m) = 0 otherwise,
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e for n >0,

a(n;i,j,m) = 0 for (i,5,m)¢D:={0<j<i, 0<m<n},
a(n;Lj,m) = 5i:j . Z a(n - 19— 3?(8)7] - y(s),m)
s€S\s1
+oisj - Y a(n— 130 —a(s),j — y(s),m)
seS
+5i:j : Z a(n - ]-;Z. - .’E(S),] - y(s),m - 1)
s€S\s1

+0i—j41-a(n—1;4,5,m—1) for (i,4,m) € D.

6. Conclusion

We conclude with a few thoughts on future directions. We are led to wonder
if the new interpretation of oscillating tableaux is significant in representation
theory, or if it is simply a form that facilitates enumeration. Furthermore,
other generalizations, such as osculating walkers [4], could be interpreted in this
context.

Baxter numbers generalize, in some sense, Catalan numbers. Both are ubiqg-
uitous combinatorial sequences, and both are related to hesitating walk fami-
lies. Perhaps a bijection between the Catalan sub-classes of one of the classes in
Proposition 19 and one of the previously known Baxter classes could be extended
to a bijection for the full class. This might also permit new interpretations of
hesitating walks in higher dimensions.

Finally let us mention that in very recent work with Mathias Lepoutre we
have been able to find a combinatorial derivation of Theorem 2.
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