On the structure of regular By crystals
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1 Introduction

For simply-laced Kac-Moody algebras g, Stembridge [8] proposed a ‘local’
axiomatization of crystal graphs of representations of U, (g). In fact, because
of an important result in [3] an essential part in studying such crystals should
have been carried out for the simplest nontrivial case g = sl(3). Our paper
[1] gives a combinatorial construction that describes the formation of any
crystal of representations of Ug(sl(3)).

In this paper we attempt to carry out a similar programme for the algebra
sp(4). Because of [3], the Stembrindge axioms for the case of Ay and our
axioms for the Bs-case give a ’'local’ axiomatization doubly laced algebras,
a doubly laced algebra is an algebra all regular rank 2 subalgebras are of
type A1 X Al, AQ, or BQ.

At the end of [8], Stembridge conjectured a list of relations between
crystal operations and Sternberg proved this conjecture in [7]. We follow
the ideology of [1] and propose axioms of monotonicity and commutativity
for decorated edge-2-colored graphs which characterize the crystals of rep-
resentations of U,(sp(4)), regular crystal graphs of Bo-type. Specifically, an
R-graph is an edge-colored graph which fulfil our Axioms K1-K5, and our
main result states that regular crystal graphs of Be-type are R-graphs and
vice versa. In particular, our axiom K5 refines Sternberg’s Bs-type rela-
tions by involving a certain labeling on the crystal edges. Moreover, we give
a direct combinatorial construction of such crystal graphs using a general
operation on graphs from [1]. On this way we introduce a new model for
representations of U,(sp(4)) (in 7-dimensional space) which does not exploit
Young diagrams. We would like to mention that our model is not polyhe-
dral, that means the following: due to this model, a regular crystal graph
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of Ba-type is located (at integer points) of the union of five 4-dimensional
polyhedra in R”, but itself the crystal is not a convex set. This model
has two projections on R*, which are the Littelmann cones, related by the
proper piece-wise linear relations. Thus, our model might be seen as the
proper graph of this correspondence between the Littelmann cones. (An-
other crossing model is developed in [2] for regular A,-crystals, which might
be seen as a proper graph for the piece-wise linear relations between the
Berenstein-Zelevinsky-Littelmann cones.)

The structure of this paper is the following. Section 2 is devoted to
axioms. In Section 3 we formulate the main result and give a constructive
characterization of the crystal graphs in question. In Section 4 we introduce
a so-called crossing model for crystals of By-type. In Section 5 we prove
that certain intervals of the admissible configurations on this model are just
crystals of representations of U(sp(4)). In Section 6 we prove that the
graphs generated by the intervals on the crossing model are essentially the
same as those constructed in Section 3.
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2 Bs-type edge-two-colored graphs

Here we construct decorated edge-two-colored directed graphs related to the
2 =2
-1 2
that match the list of axioms below (or a part of this list).

Bo-type Cartan matrix A = ( ) . Of our interest will be those graphs

We consider a digraph G = (V, A1 || A2) with the vertex set V' and the
edges set partitioned into two subsets A; and A,. For convenience we refer
to the edges in A; as being colored in color 1, say red, and the edges in A,
as being colored in color 2, say green. The first color is managed by the first
column of A and the second one by the second column.

The first axiom concerns the structure of the monochromatic graphs
(V,A1) and (V, A3), and states that they are constituted as the disjoint
union of finite monochromatic strings. Specifically,

(K1) For i = 1,2, each (weakly) connected component of (V, 4;) is a finite
simple (directed) path, i.e., a sequence of the form (v, e1,v1, ..., €x, Uk),



where vy, v1,...,v; are distinct vertices and each e; is an edge going
from v;_1 to v;.

In particular, each vertex v has at most one outgoing 1-colored edge and
at most one incoming 1-colored edge, and similarly for 2-colored edges. For
brevity, we refer to a mazimal monochromatic path in K, with color ¢ on the
edges, as an i-string. The i-string passing through a given vertex v (possibly
consisting of the only vertex v) is denoted by P;(v), its part from the first
vertex to v by Pi"(v), and its part from v to the last vertex by P (v). The
lengths of P"(v) and of PP"*(v) (i.e., the numbers of edges in these paths)
are denoted by t;(v) and h;(v), respectively. The second axiom tells how
these lengths can change when one traverses an edge of the other color.

Besides colors, the edges of G are endowed with labels, and for this
reason, we say that G is a decorated graph. More precisely, the red edges

have labels 0 or 1 and the green edges have labels 0 or % or 1.

The second axioms indicates how the labels are related to the “local”
structure of the graph. Consider a red edge (z,y) connecting a vertex z to a
vertex y (using the operator notation for Kashiwara crystals, one can write
y = Fiz), and consider the strings P,(z) and P»(y). This gives us the tuple
(ta(x), ha(x), t2(y), h2(y)), and in following axiom we pose some regularity
conditions on these tuples.

(K2) For each 1-colored edge e going from z to y, there hold t2(z)—t2(y) > 0
and ho(y) — ho(z) > 0, and there holds (t2(z) — t2(y)) + (h2(y) —
ho(z)) = 1, the label being assigned to e is equal to ho(y) — ho(z).

For each 2-colored edge e’ going from p to ¢, and, for the pair of strings
Py (p) and P;(q), there hold 1 (p) — t1(g) > 0 and hi(q) — hi(p) > 0,
and there holds tl(p);tl(q) + hl(q)ghl(p) =1, the label assigned to ¢’ is
equal to 71“((1)5’“(7’) € {0, 5,1}.

One can see that the decorated edge-colored graphs which satisfy the
axioms (K1)-(K2) are semi-normal crystals due to Kashiwara [5]. In fact,
let us define the weight function wt : V — Z2 by the rule

w: x — (hi(z) — ti(x), ho(x) — ta(z)).
Then, the functions %;, h; and wt define a semi-normal crystal.

The graphs which meet axioms (K1)-(K2) are called K-graphs. We make
a category of such graphs by setting morphisms as follows:

a mapping f : C; — Cy of K-graphs is a morphism if there holds f(F;(b)) =
F;(f(b)) for each b such that there is an edge of the form b — F;b, and if
the labels on the edges b — F;b an f(b) — F;(f(b)) coincide.



Axioms K1 and K2 are motivated by the Kashiwara definition of crystals.
The following axioms were found experimentally and their justification is
done by Theorem 1 in which we assert that regular crystal graphs of Bs-
type characterized by the whole list of axioms.

The third axiom is

(K3) For any i and any string P;, the labels on consecutive edges e; and es
(where ey follows e1) do not decrease.

Then each red string has a unique vertex (possibly the beginning or
ending one) at which labels switch from 0 to 1, we call this vertex critical.

The next axiom presents important commutation between special pairs
of green and red edges.

(K4) Suppose a red edge enters a vertex v and has label a and let a green
edge leave v and have label b. Then there holds b # a, and if a < b,
then the commutative diagram takes place:

N[ —

1or% v. lor

N[

1or

Similarly, suppose a green edge enters a vertex ¢ and has label b and
a red edge leaves ¢ and has label a. Then there holds b # a, and if
a > b, then the commutative diagram takes place:

[l

0 or

Oor% q 0 or

N[

The objects of a category of decorated edge-colored graphs which meet
axioms K1-K4 are called S-graphs of Be-type. The definition of the tensor



product of crystal graphs in [5] might be applied for S-graphs. One can show
that S-graphs form a tensor category indeed.

In order to get a filling how these axioms could ‘work’, we prove the
following property of green strings.

Lemma 1. In any S-graph each green string either has one critical
vertex, where label 0 is switched to 1, or one edge with label %, called the
critical edge.

Proof. Consider a green edge labeled % on a green-colored string of an
S-graph. Suppose that a red edge labeled 1 emanates from the end point of
this edge. Then the red string passing through this red edge is infinite. This
follows from Axiom K4 and Axiom K2. Analogously the same holds if a red
edge with the label 0 ends at the starting point of the green edges labeled
%. Thus, an ‘entering’ red edge to a green edge labeled % has to have the

label 1, and a ‘leaving’ red edge has to have the label 0.

Now using this property of red edges we prove the claim. Suppose two
green edges, both labeled %, are lying on a green string. Then, because of
Axiom K3, there is a vertex on this string which is a common vertex for a
pair of green edges labeled % Hence, from Axiom K2 we conclude that there
exists at least one red edge ingoing to such a vertex, and there is at least
one outgoing red edge from this vertex. Then from the above property of
red edges ingoing and outgoing from the end points of green edges with the
label %, we have that the ingoing edge has the label 1 and the outgoing edge

has the label 0. That contradicts to the monotonicity Axiom K3. Q.E.D.

2.1 R-graphs of B)-types

S-graphs might have branchings and the category of S-graphs is larger than
the category of crystal graphs of representations of U,(sp(4)). In order to
get the desired category (and avoid branchings) we introduce the following
axiom.

(K5) The implications illustrated on the following Pictures 1, 2, 3, and 4
have to hold.
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Picture 1.

These two relations have the following interpretation: the local situation
in an S-graph on the left hand side implies the commutative diagram on the
right hand side. The dual local situations to the left hand sides (reversing
the edges and changing the labels a — 1 — a) imply the same right hand
side diagrams. (If the labels are ignored, one gets the degree 4 relations due
to Sternberg [7]).

Next are other two relations (again the local situation on the left hand
side implies the commutative squares on the right-hand side (degree 5 rela-
tions if the labels are ignored).

1
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1 0 1 0
1 1
Picture 2.
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Picture 3.

The final picture illustrates the Verma relation of degree 7, though de-
picted in the form somewhat different from that of the custom Verma rela-
tion of Ba-type. (The custom relation is obtained if one draws two commu-
tative diagrams which follow from Axiom K4.)

or = 1

N[ =

Picture 4.

An S-graph of Bs-type in which the above relations hold is called an
R-graph of Bs-type.

In that follows it will be of use the following two implications for Bs-type
Verma, relations, which follow from implications from Pictures 2, 3 and 4.
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Picture 4a.

We claim the following

Theorem 1. A connected R-graph of Bo-type is a crystal graph of an
irreducible finite dimensional representation of Uy(sp(4)), and vise versa.

3 Construction of R-graphs of By-type

Here we give a direct construction of such graphs.

Definition. Given an R-graph G, we define another labeled digraph
G=(WV,EX:V > Z2) which we call the view from the sky (along red
strings) on G:

the set of vertices, V, of G is constituted from red strings of G, each
vertex ¥ is attributed a label being a pair of numbers (X (9),Y (9)) (X +Y
is the length of the corresponding red string and X is the number of edges
labeled 0 on this string);

the set of edges, E, is formed by the following rule: the vertices ¢ and
%' joined by an edge going from % to ¥’ and labeled either 1, or %, or 0, if
there exists such a green edge which joins points on the red strings which
correspond to 9 and ©'.

Now we are going to give a combinatorial characterization of the view
from the sky on an R-graph. A significance of this characterization is due
to that any R-graph is determined by its view from the sky.

The following operation introduced in [1] will be of use.



Consider arbitrary graphs or digraphs G = (V, E) and H = (V', E'). Let
S be a distinguished subset of vertices of G, and T' a distinguished subset
of vertices of H. Take |T| disjoint copies of G, denoted as Gy (t € T),
and |S| disjoint copies of H, denoted as H; (s € S). We glue these copies
together in the following way: for each s € S and each t € T, the vertex s
in G, is identified with the vertex ¢ in H;. The resulting graph consisting
of [V||T| + |[V'||S| — |S||T| vertices and |E||T| + |E'||S| edges is denoted by
(G,8) > (H,T).

In our case the role of G and H is played by 2-colored digraphs K (H, 0)
and K (0, A) depending on parameters H, A € Z (it will be clear later that
these digraphs are the views from the sky on the crystals of irreducible repre-
sentations of U,(sp(4)) with the highest weight HX; and A, respectively,
where A1 and Xy denote the fundamental weights for the Bs-type Cartan
matrix).

Lemma 2. Let G be an R-graph. Then any vertex 9 of G has at most
three ingoing edges and at most three outgoing edges; the ingoing edges
have different labels and the outgoing edges have different labels; there are
no parallel edges in G'.

For a proof of this Lemma we use the following properties, which follow
from the ”local commutative diagrams” illustrated on Pictures 1-4 and the
commutative squares figured in Axiom K4.

(*) If a vertex v is located at least two red edges above a critical vertex
on P;(v) or below the critical vertex on P;(v), that is ¢;(v) > X +2 or
t1(v) < X — 2, respectively ((X,Y) = (t1(x), h1(x)), where we let * to
denote the critical point on P;(v)). Then a pair of the red and green
edges ingoing in v form a commutative square, and a pair of the red
and green edges outgoing from v form a commutative square.

If a vertex v is such that ¢;(v) = X + 1 (one edge above the critical),
then the pair of ingoing red and green edges form a commutative
square.

If a vertex v is such that ¢;(v) = X — 1 (one edge below the critical),
then the pair of outgoing red and green edges form a commutative
square.

From Lemma 1 we have the following property.

(**) For each red string P, there can be at most two green strings having
critical edge e (i.e., labeled 1) such that e enters or leaves a vertex in
P, and if this is the case, then the picture is as follows

'Edges © and ©' are parallel if the join the same vertices.
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Picture 5.

That is, either e enters P one red edge before the critical point or leaves
P one red edge after this point.

It will be useful to color edges in the view from the sky graph G in two
colors, green and blue. We color the edges labeled % in green. An edge é
labeled 0 (or 1) is colored in blue if | X (¢) — X (9")| = 1 holds, and é is colored
in green if either | X (9) — X (¢')| = 2 or | X (%) — X (9")| = 2 hold.

3.1 Graphs K(H, A)

The above-mentioned graph K(H,0) is an R-graph of By-type which has
a red string of the form (0, H) (with H red edges labeled 1 and no edges
labeled 0) outgoing from the minimal vertex and no green edge outgoing
from this vertex. These graphs have the “view from the sky” (depending on
the parity of H) for H = 1,2,3,4 as depicted below. One can realize how
to construct such a view for an arbitrary H: the building blocks are the
graph K (2,0) (the view from the sky on the right-hand side relation from
Picture 1 and two rhombuses from the graph K (3,0), these rhombuses are
view from the sky the relations from Picture 2 and 3. The rule for travelling
along the red edges follows from the commutativity Axiom K3. We define
the set of distinguished vertices in K (H,0) to consist of the vertices at the
ground floor, or ‘zero etage’, in the corresponding triangles and trapezoids;
by an analogy with [1] we call this set the diagonal. Note that the red paths
at the diagonal are of the form (I, H —1),1=0,...,H, and the red paths at
the etage k are of the form (I,H — 2k —1),1 =0,...,H — 2k. One can see
that K (H,0) has no blue edges.

10



° )
(0,0)
K(1,0) 2
0 1
(0,2) 75 (1,1) 3 (2,0)
K(2,0)
°
0 1
1 1 1
e 2 @ ¢ 2 . 2 9
0 10 1 0 0 1 g 1
1 1 1 1 1 1
¢ 2 ¢ 2 e o ¢ 2 ¢ 2 ¢ 2. 2 0
K(3,0) K(4,0)
Picture 6.

In its turn, the R-graph of By-type K (0, A) is an R-graph which has no
red edge outgoing from the minimal vertex, and the green string beginning
at it consists of A edges labeled 1. The graph K (0, A) has no green edges.
Therefore the structure of such a graph is forced by the As-type Verma
relation presented at Picture 1. This graph has the form of a triangular
grid, and we depict two examples with A =1 and A = 2 in Picture 7. The
distinguished vertex subset in the graph K (0, A), the diagonal, is defined to
be constituted by the unique vertices of the degenerated red paths from the
top etage.

11



Picture 7.

Definition. We define K(H, A) to be the R-graph for which the view
from the sky is of the form K (H, A) = K(H,0) > K (0, A) as a digraph with
labeled edges (the distinguished subsets in the graphs K (H,0) and K (0, A)
are the diagonals as described above). The labels at the vertices of K (H, A)
are set by the following rule: if a vertex 9 belongs to a copy of K (H,0),
then we set (X (9),Y () = (X (9),Y (9)), where (X (9),Y (%)) is the label on
0 in R’(H, 0); if ¥ belongs to a copy of K(0,A) being attached to the [-th
distinguished point of K (H,0), then (X (), Y (%)) = (X (9)+1,Y (8)+H —1),

A~

where (X (9),Y (9)) is the label on 4 in K (0, A).

Remark. If we regard K (H,A) as edge green-blue colored graph, and
will take into account the rule of changing of the vertices labels along these
labeled edges, then the labels on the vertices are determined if we set the
label (0, H) to the source vertex of K (H, A).

Proposition 1. Any connected R-graph of Bs-type takes the form
K(H,A) with H and A being the lengths of the red and green strings,

respectively, emanating from the source vertex.

The rest of the paper is devoted to a proof that the graph K(H, A) is the
crystal graph of the irreducible representation of U, (sp(4)) with the highest
weight H)A;+ AXs. To prove this, we will use a new model related to Ba-type
crystals.
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4 Crossings model for By-type crystals

Here we present a model of the free regular crystal K> of Bo-type. That is
an edge-2-colored graph with infinite monochromatic strings passing through
each vertex, and we will show that each Bs-type crystal for irreducible rep-
resentation can be obtained as an interval of K.

The vertices of K* are the functions on the vertex-set the diagram
depicted on Picture 8, for which the inequalities indicated by arrows are
imposed, namely: f(a) > f(b) > f(c) and f(z) > f(y) > f(2) > f(w). Also
it is required that the following parity conditions hold: f(y) + f(z) € 2Z
and f(a), f(c) € 2Z2, and that at least three of the above inequalities turn
into equalities. The possible combinations of equalities are given in Picture
9.

Such functions are called admissible configurations.

a Yy 2

-~ o C
s ,') w
Picture 8.

>One may consider an equivalent model, with odd f(a), f(c) € 2Z +1 and half-integer
weights (related to half-integer cells in the corresponding Young diagram).

13



L
N

R

Picture 9.

Now we define the structure of a crystal on this set of admissible con-
figurations f by explaining to which admissible configuration f goes under
the action of the operations that we denote by F; and F5 as before. That
is, the red edges of the crystal take the form (f, F} f) and the green edges
take the form (f, Faf).

The operation F; “moves” f to an admissible configuration f’ which can
differ from f at exactly one of the points z, b, w. Specifically,

if f(w) < f(z), then F} increases f by one at the vertex w: f'(w) =
flw) + 1

if f(w) = f(2) and f(b) < f(a), then F} increases f by one at b: f'(b) =
f(b)+1;

and if f(w) = f(z) and f(b) = f(a), then F} increases f by one at z:
f'(@) = f(z) +1.

In its turn, f' = F,f differs from f at one or two points among a, vy, z,
¢, and F; either increases f by 2 at one point, or increases f by 1 at y and
at z. More precisely,

if f(a) — f(b) < f(a) — f(c), then f'(c

)
if f(a) — f(b) > f(b) — f(c) and f(y) +2 < f(z), then f'(y) =y +2;
if f(a) — f(b) > (b) f(c) and f(y) +1 = f(z), then f'(y) = f(y) +1
and f'(z) = f(z) +1
if f(a) — f(b) > ( ) — f(c), f(y) = f(z), and f(2) < f(y), then f'(z) =
fz) +2

14



and if f(a) — f(b) > f(b) — f(c), f(y) = f(z), and f(z) = f(y), then
f'(a) = f(a) +2.

It is easy to see that these operations preserve the admissibility.

Remark. The definition of an admissible configuration might be easy
extended to R-valued functions (of course, the evenness condition disap-
pears) and the definition of the operations F*(f), i = 1, 2, are defined by a
clear modification of the above operations.

Definition. An admissible configuration is called a fat vertez if f(a) =

f(0) = f(c) € 2Z and f(z) = f(y) = f(2) = [ (w).

The subset B(H,A) C K* of configurations which satisfy the restric-
tions f(c) > 0, f(w) > 0, f(a) < A, f(z) < H is called the interval of
weight A/2Xy + H)\ (A € 2Z).

Note that the interval ‘join’ the fat vertex 0 and the fat vertex f(a) =
f(b) = f(¢) = A and f(z) = f(y) = f(z) = f(w) = H, and the whole
rectangle of the fat vertices 0 < f(a) = f(b) = f(c) < Aand 0 < f(z) =
fly) = f(z) = f(w) < H belong to this interval. Also note that the
interval joining a fat vertex f(a) = f(b) = f(c) = A" and f(z) = f(y) =
f(z) = f(w) = H' and the fat vertex f(a) = f(b) = f(c) = A+ A" an
fle)=fly)=f(z)=f(wy=H+H' A, Ae€2Z, H He€Z,A H>0,is
isomorphic to the interval of weight A/2X\y + H ;.

We define the operations F; and F» on the interval B(H, A) as they are
defined in K> with the following modification at the final cases: if in the
last case of the definition of Fj, one has f(z) = H, then we set Fif := f
(but do not draw a loop in the graph); and if in the last case of the definition
of Fy, one has f(a) = A, then we set F5(f) = f. Accordingly, the reverse
operation Fs does not act if it would result in the value on ¢ below zero,
and similarly for £ and w.

One can check that this model gives the inclusion
B(H,A) C B(H,0)x B(0,A),

where the distinguished subsets in B(H,0) and B(0, A) are constituted
by the fat points.

Using Littelmann’s path model [6], we prove that the interval B(H, A) C
K is a crystal graph of the irreducible representation of sp(4) with weight
%)\2 + H)\i. That is there holds

Theorem 2. For any A € 27 and H > 0, the interval B(H, A) is the
crystal graph of a reqular representation of the rank 2 algebra of Ba-type and
vice Versa.
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Remark. We want to stress the following aspect of the crossing model.
From this model one can see that a crystal graph of a regular representation
of Bo-type (a similar structure holds for other types algebras) is located on
a union of 5 polyhedra, and it is not a polyhedron itself. There are two
projections of this union of polyhedra to the Littelmann cones, and these
cones have to be related via the specific piece-wise linear transformation.
Thus, the crossing model captures the global non-convex structure of regular
crystals, and the language of the Littelmann cones describes the projections
of this non-convex structure.

In view of Theorem 2, Theorem 1 would follow from from the following

Theorem 3. There holds B(H, A) = K(H,A/2).
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