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Representing Tropical Linear Spaces by Circuits
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Abstract. We study representations of tropical linear spaces as intersections of tropical hyperplanes of
circuits. For several classes of matroids, we describe minimal tropical bases. We also show that every
realizable tropical linear space has a natural, tropically linear parametrization involving its cocircuits.

Résumé. Nous étudions les représentations des espaces vectoriels tropicaux comme intersections d’hyperplans
de circuits tropicaux. Pour plusieurs classes de matröıdes, nous décrivons des bases tropicales minimales.
Nous montrons aussi que tout espace vectoriel tropical réalisable possède une paramétrisation tropicale
naturelle impliquant ses cocircuits.

1. Introduction

Let T = (R ∪ {∞},⊕,�) be the tropical semiring where ⊕ is taking minimum and � is the usual
addition. We can mod out Tn by tropical scalar multiplication to get the tropical projective space TPn−1 =
(Tn\(∞, . . . ,∞))/R(1, . . . , 1), which is sometimes more convenient to work in.

Tropical linear spaces are tropical analogues of usual linear spaces. The tropical hyperplane of a tropical
linear form (c1 � x1)⊕ · · · ⊕ (cn � xn), c ∈ TPn−1, is the set of points x ∈ TPn−1 such that the minimum in
the linear form is attained at least twice. Let us recall the setup from [9]. Let d ≤ n be positive integers.

A point p ∈ TP([n]
d )−1 is called a tropical Plücker vector if for every d − 2-subset S of [n] and four distinct

elements i, j, k, l ∈ [n]\S, the minimum in (pSij � pSkl) ⊕ (pSik � pSjl) ⊕ (pSil � pSjk) is attained at least

twice. Given a tropical Plücker vector p ∈ TP([n]
d )−1, for each d + 1-subset I ⊂ [n] we can define a tropical

linear form ⊕i∈I

(

pI\{i} � xi

)

called a circuit. The tropical linear space corresponding to p is the intersection
of the tropical hyperplanes of these circuits. A tropical basis of a tropical linear space is a set of defining
linear forms for the space. Tropical bases are not unique, and need not be minimal in any sense. Much of
this paper is concerned with finding minimal tropical bases. Tropical linear spaces are needed to compute
tropical discriminants [3], and thus a minimal basis is desirable.

A tropical linear space whose defining tropical linear forms have coefficients all 0 or ∞ is called constant
coefficient. Its associated tropical hyperplanes are determined by the supports of the tropical linear forms,
that is, the entries with non-∞ coefficients. As a result, the conditions for being a tropical basis depend
only on those supports. In this case, we can deal with the matroid whose dependent sets are supports of
these tropical linear forms. In Sections 2 and 3, we deal exclusively with the constant coefficient case, which
amounts to finding tropical bases of matroids. We describe minimal tropical bases for several classes of
matroids. Our main findings, appearing in Section 3, are that graphic matroids, cographic matorids, and the
matroid R10 have unique minimal tropical bases. We hope to extend these findings to all regular matroids.

In Section 4, our main result concerns the tropical rank of a matrix whose rows form a tropical basis.
Furthermore, we conjecture a criterion for being a tropical basis in the non-constant case. Finally, in Section
5, we show that there is a natural parametrization of tropical linear spaces in terms of cocircuits.
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2. The constant coefficient case

As discussed in the Introduction, constant coefficient tropical linear spaces can be described in terms of
their associated matroids. We will deal with the matroid whose circuits are supports of circuits of a tropical
linear space.

Let M be a matroid and C be the collection of its circuits. For a circuit C ∈ C, let T (C) be the set
of points x ∈ TPn−1 such that the minimum value in {xi : i ∈ C} is attained at least twice. The set
T (C) :=

⋂

C∈C T (C) is a polyhedral fan called the tropical variety or the Bergman fan of M . Given a subset
B ⊂ C, define T (B) :=

⋂

C∈B T (C). The set B is called a tropical basis of M if T (B) = T (C).

problem 2.1. Identify a minimal tropical basis for any matroid.

It was shown in [1] that the intersection of the tropical variety of a matroid M and a sphere centered
at the origin is a geometric realization of the order complex of the lattice of flats of M . In a matroid, an
element e is called a loop if {e} is a circuit, and two elements e1, e2 are said to be parallel if {e1, e2} is a
circuit. Since removing the loops and replacing each parallel class with a single element in a matroid does
not change the lattice of flats, we may assume that our matroids are simple, i.e. contain no loops or parallel
elements. Since the circuits of the direct sum (or 1-sum) of two matroids is the union of circuits of the
summands, the following is clear.

Lemma 2.2. If matroids M , M1, and M2 are such that M = M1 ⊕M2, then the tropical bases of M are
precisely unions of tropical bases of M1 and M2.

Since every matroid is the direct sum of its connected components, we can restrict attention to connected
matroids.

Each circuit in the tropical basis “excludes” certain points from being in the tropical variety, namely
those values which induce a unique minimum on the terms of that circuit. We can cut down a tropical basis
of a matroid as long as the smaller circuit set excludes the same points as the larger one. In comparing the
excluded points, it suffices to consider the 0/1 points:

Lemma 2.3. For any B ⊂ C,

[T (B) ∩ {0, 1}n = T (C) ∩ {0, 1}n] =⇒ [T (B) = T (C)].

In other words, to test equality of T (B) and T (C), it is sufficient to check that they agree on 0/1 points.

Proof. Suppose we are given a subset B ⊂ C of circuits of a matroid M , and we would like to know
if B is a tropical basis of M . Since each circuit of a matroid excludes points, T (B) contains, or is equal to,
T (C). Thus, we need only worry about “extra” points, i.e. points which are in T (B) but not in T (C). We
show that if T (B) contains an extra point x, then T (B) contains an extra 0/1 point. Thus checking that
there are no extra 0/1 points shows equality of T (B) and T (C).

Suppose T (B) contains an extra point x. Then there exists a circuit C ∈ C\B which excludes x, and
therefore the set {xi : i ∈ C} has a unique minimum m. From x, construct the 0/1 vector v as follows:

vi =

{

1 if xi > m
0 if xi ≤ m

We see that v is excluded by C, so v /∈ T (C). However, for any circuit C̃ such that {xi : i ∈ C̃} attains its

minimum at least twice, {vi : i ∈ C̃} also attains its minimum at least twice, so v ∈ T (B). �

So it is possible to remove some circuits from a tropical basis of a matroid, if the same 0/1 vectors are
excluded in the smaller set. It was shown in [1] that a 0/1-vector is in the tropical variety if and only if its
support, the set of coordinates with non-zero values, is a flat of the matroid. Hence the excluded points are
non-flats. A collection of circuits is a tropical basis if and only if it excludes all 0/1 non-flats.

If two circuits C1, C2 have a unique element in their intersection, pasting them means taking their
symmetric difference C14C2 = (C1\C2) ∪ (C2\C1).

Lemma 2.4. If a collection S of circuits of a matroid has the property that every other circuit of the
matroid can be obtained by successively pasting circuits in S, then S is a tropical basis.
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Proof. Suppose we have two circuits, A and B, and a weight assignment such that A and B both have
their minimum value attained at least twice. Form the circuit C by pasting A and B together along some
element e. We claim that C too attains its minimum at least twice.

The minima may be attained in one of three ways:
Case 1) A attains its minimum on a and a′, neither of which is e, and B attains its minimum on b and

b′, neither of which is e. In this case, C attains its minimum twice, on either a and a′, or b and b′ (or all
four), depending on which edge weights are minimal.

Case 2) A attains its minimum on edges a and e and B attains its minimum on edges b and b′, neither
of which is e. Then b and b′ have lower weight than e, so C attains its minimum on b and b′.

Case 3) A attains its minimum on edges a and e, and B attains its minimum on edges b and e. Then
weight(a) = weight(e) = weight(b), and thus C attains its minimum on a and b. �

2.1. Partition matroids. Given a partition Π of [n], the partition matroid MΠ is the matroid whose
circuits are pairs of elements in the same block of the partition. This is the case when the defining ideal of
the linear space is also binomial.

A minimal tropical basis consists of enough pairs in each block to form a “spanning tree” on that block.
This ensures uniform weighting within each block, and thus forces the minimum to be attained twice on each
circuit.

2.2. Uniform matroids. The uniform matroid Ud,n is the matroid arising from a generic set of n
points in Rd. The circuits of Ud,n are the (d + 1)-subsets of [n]. Any tropical basis of Ud,n must contain at
least 1

d+1

(

n
d

)

elements [2, Theorem 2.10], and the bound is not tight.

Lemma 2.5. An inclusion minimal tropical basis B for a uniform matroid U is given by

B = {C : i ∈ C},

where i is any fixed element of the matroid.

Proof. We must show that given a point x ∈ Rn that is excluded by some circuit of U , we can find a
circuit in B which excludes x. As shown above, we can restrict our attention to 0/1 points. Without loss of
generality let us fix i = 1, so that the tropical basis B consists of all circuits of U containing the element 1.
Consider a 0/1 point x ∈ Rn that is excluded by some circuit Cx. The minimum of {xj : j ∈ Cx} is attained
uniquely. Consequently, there is exactly one element k of Cx such that xk = 0.

If Cx contains the element 1, then it is in B and we’re done. Otherwise, consider the following two cases:
Case 1 (x1 = 1): Let C̃x be the circuit obtained from Cx by replacing any element of Cx other than k

by the element 1.
Case 2 (x1 = 0): Let C̃x be the circuit obtained from Cx by replacing k with 1.

In both cases, C̃x is a circuit of U , since every (d + 1)-subset of [n] is a circuit. It contains the element

1, so it is in B. Finally, C̃x excludes x, since the minimum of {xj : j ∈ C̃x} is attained uniquely. Thus x is
excluded by the tropical basis B.

To see that B is inclusion minimal, consider a circuit C∗ ∈ B. The point x, where xi = 1 for all i ∈ C∗\1
and xi = 0 otherwise, would be excluded by B, but not by B\{C∗}. Thus it is necessary to include C∗ in
this tropical basis. �

Note that the tropical bases given for uniform matroids are not unique. For example, consider U2,4.
It has four circuits, namely 123, 124, 134, and 234. Any collection of three out of the four circuits forms
an inclusion- and cardinality- minimal tropical basis. Yet, there is no single circuit that must be in a
tropical basis of U2,4. Additionally, the tropical bases given above for uniform matroids are not in general
cardinality-minimal, despite being inclusion-minimal. For example, the smallest tropical bases of U2,5 contain
five elements (123, 124, 125, 134, and 345 for example), however there are inclusion-minimal tropical bases
containing six elements, namely the six circuits which contain the element ‘1’.

2.3. Fano plane. The Fano plane gives rise to a matroid whose ground set consists of its 7 vertices.
The circuits are the “lines” in the point configuration (see Figure 1) and any 4-subset not containing a line.

The unique minimal tropical basis for the Fano plane consists of the seven 3-element circuits, one arising
from each line (124, 137, 156, 235, 267, 346, & 457).
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Figure 1. Fano plane

The lines are necessary: If one of the lines, L, were to be excluded, we could assign weight 1 to two of
the line’s points, weight 0 to the remaining point, and weight 0 to all points off the line. Thus every circuit
except L would have its minimum attained twice, while L would have a unique minimum.

The lines are sufficient: Each 4-element circuit (1236, 1467, 2456, 3567, 1257, 1345, and 2347) can be
obtained by pasting two 3-element circuits together along a shared element, and deleting that element. For
example, we can think of the circuit 1236 as being pasted from the circuits 124 and 346. Thus, by Lemma
2.4, the 3-element circuits are sufficient.

problem 2.6. Find a minimal tropical basis for transversal matroids [10, Section 3.3].

problem 2.7. What happens to tropical bases under taking minors (deletion and contraction)?

3. Regular matroids

A regular matroid is one that is representable over every field. In this section we characterize minimal
tropical bases of certain important classes of regular matroids, namely graphic matroids, cographic matroids,
and the matroid R10. Seymour showed that every regular matroid can be constructed by piecing together
matroids of these types [8].

3.1. Graphic matroids. A graphic matroid is formed from a graph G. The edges of G form the
ground set, and the circuits of the matroid are the edge collections corresponding to cycles of G, where a
cycle is a closed walk all of whose vertices have degree two in the cycle. If G contains n edges, we can think
of a point in Rn as giving edge weight assignments for the edges of G. A point in Rn is in the tropical variety
of the graphic matroid arising from G if and only if each cycle in G attains its minimum edge weight at least
twice. We restrict our attention to graphic matroids arising from graphs with no loops and no parallel edges.

Theorem 3.1. The unique minimal tropical basis for a graphic matroid is the collection of its induced
cycles.

An induced cycle is an induced subgraph that is itself a cycle.

Proof. Induced cycles are sufficient: Suppose we have a weight vector which achieves its minimum
twice on each induced cycle. Consider a circuit arising from a non-induced cycle C. Then the induced
subgraph on the vertices contained in C contains a chord. Divide C into cycles C1 and C2 along this chord.
Continuing in this manner, we can decompose C into a collection of induced cycles pasted together. Thus
by Lemma 2.4, induced cycles form a tropical basis.

Induced cycles are necessary: Suppose we have an induced cycle C which is not in our tropical basis.
Then it is possible to construct an edge weighting for which the minimum is attained at least twice on every
cycle except C. Assign all but one edge of C weight 1. Assign weight 0 to the remaining edge of C and to
all other edges of the graph. Every cycle incident with C has two or more edges that are not contained in
C, since otherwise C would contain a chord and thus not be an induced cycle. Thus all cycles except C have
their minimum attained at least twice, while C has a unique minimum. Thus it is necessary to have C in
every tropical basis.

�
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3.2. Cographic matroids. A cographic matroid is formed from a connected graph G, having the edges
of G as its ground set. Circuits of cographic matroids are the inclusion-minimal edge cuts, i.e., sets of edges
such that removing them makes G disconnected. In order to insure every circuit contains at least 3 elements,
we will restrict our attention to cographic matroids arising from 3-edge-connected graphs. A graph is called
k-edge-connected if it remains connected after removing any k − 1 edges. A bridge of a connected graph is
an edge whose removal disconnects the graph. A connected graph is 2-edge-connected if and only if it does
not contain a bridge.

V

0

0

1 1 1 0

UA B

Figure 2. 2-edge-connected graph

Theorem 3.2. The unique minimal tropical basis of a cographic matroid M on graph G consists of the
edge cuts that split G into two 2-edge-connected subgraphs.

Proof. For an edge cut C that splits G into connected subgraphs U and V , let the index of C be the
sum of the number of bridges in U and V . We will show by induction on the index that the circuits of
positive index can be obtained by successively pasting index 0 circuits, as in Lemma 2.4.

Suppose an edge cut C splits G into connected subgraphs U and V . Let e be a bridge in U that splits
it into subgraphs A and B. Let brA, brB , and brV be the number of bridges in A, B, and V respectively.
Then the index of C is equal to 1 + brA + brB + brV . Let C ′ be the edge cut that splits A and B ∪ V . Here
B ∪ V denotes the induced subgraph of G on the vertices in B and V . In B ∪ V , there are at least two
edges between B and V because otherwise the edge e and the unique edge would disconnect G, contradicting
the 3-edge-connectedness of G. Hence a bridge in B ∪ V must be either a bridge in B or a bridge in V .
Therefore, the index of the edge cut C ′ is at most brA + brB + brV . Similarly, the index of the edge cut C ′′

that splits B and A ∪ V is at most brA + brB + brV . The edge cut C is obtained by pasting the lower index
circuits C ′ and C ′′ along e. By induction on the index, we see that C is obtained by successively pasting
index 0 circuits. This proves (by Lemma 2.4) that the index 0 circuits form a tropical basis.

Now we show that all such edge cuts are necessary. Suppose an edge cut C ⊂ edges(G) splits the graph
G into subgraphs U and V , each of them 2-edge-connected. Consider edge weights as follows: each edge
contained in U and V gets weight 0, one edge going between U and V gets weight 0, and the other edges
between U and V get weight 1. Consider any other edge cut C ′ 6= C. It must cause either U or V to become
disconnected. Suppose it cuts U into subgraphs A and B (see Figure 2). Since U is 2-edge-connected, there
are at least 2 edges going between A and B, and those edges are in C ′. Hence the minimal weight 0 is
attained at least twice on C ′, but not on C. Thus C must be in our tropical basis.

�

3.3. The matroid R10. The matroid R10 is a regular matroid whose elements are given by the edges
of the complete graph on five vertices, K5. Its circuits are given by the fifteen 4-cycles of K5, along with the
complement of each 4-cycle. Thus R10 has 30 circuits.

Proposition 3.1. The unique minimal tropical basis of R10 consists of the fifteen 4-cycles.
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Proof. The 4-cycles are necessary: For any 4-cycle C = {a1, a2, a3, a4}, we can construct a 0/1-point
x which is excluded by C, but not any other circuit of R10. Set xa1 = xa2 = xa3 = 1, and assign 0 to
all other entries of x. Then x attains its minimum value on C uniquely, while on every other circuit its
minimum is attained at least twice. This is because no other 4-cycle can share 3 elements with C, and any
4-cycle-complement will contain at least three elements disjoint from C, corresponding to ‘zero’ entries of x.

In order to show the 4-cycles are sufficient, we show that any 0/1-point excluded by a 4-cycle-complement
will also be excluded by a 4-cycle. Consider a point x which is excluded by a 4-cycle-complement C =
{a1, a2, a3, a4, a5, a6}. Since x attains its minimum uniquely on the terms of C, without loss of generality
suppose xa1 = 0 and xa2 = xa3 = xa4 = xa5 = xa6 = 1. Note that no 4-cycle-complement contains a
4-cycle. In order for a 4-cycle to exclude x, it must intersect C in exactly three elements other than a1. All
4-cycle-complements look the same up to permuting the vertices. Figure 3 shows one such picture. One can
easily see that for any 5-element subset of the 6 edges, there exists a 4-cycle meeting the subset in exactly 3
edges. Therefore every point excluded by a 4-cycle-complement is also excluded by a 4-cycle.

Figure 3. 4-cycle-complement

�

problem 3.3. Do all simple regular matroids have unique minimal tropical bases?

The Fano plane is not regular but has a unique minimal tropical basis.

4. Non-constant coefficient case

We now discuss the non-constant coefficient case. A matroid polytope of a rank d matroid on the ground
set [n] is the convex hull of the characteristic vectors in Rn of the bases of the matroid. The hypersimplex ∆d,n

is the convex hull of 0/1 vectors in Rn with coordinate sum d. A matroidal subdivision of ∆d,n is a regular

subdivision in which every face is a matroid polytope. It was shown in [9] that a point p ∈ TP[(n]
d )−1 is a

tropical Plücker vector if and only if it induces a matroidal subdivision of ∆d,n. Moreover, the corresponding
tropical linear space is the polyhedral subcomplex of the dual of the subdivision, consisting of the cells dual
to matroid polytopes of loop-free matroids, i.e. matroids without any one-element circuits.

A coordinate of p being ∞ is equivalent to deleting the corresponding vertex from the hypersimplex
∆d,n. The case when all coordinates of p are either 0 or ∞ is the constant coefficient case discussed in
Sections 2 and 3. In this case, the subdivision contains a single matroid polytope, and the circuits of the
corresponding matroid are precisely the supports of the circuits defined in the Introduction. The tropical
linear space of a matroid is also called the Bergman fan.

Since the hypersimplex ∆d,n lies on the hyperplane of points whose coordinates sum to d, the duals
of the subdivisions, hence the tropical linear spaces, have a lineality space containing R(1, . . . , 1), as seen
above. Since each cell in a matroidal subdivision is a matroid polytope, the star of any face in the tropical
linear space is isomorphic to a constant coefficient tropical linear space.

Let K be the field of Puiseux series
∑

a∈I caxa where I is a locally finite subset of R with a least element
and ca ∈ C. Let the degree map deg : K → T be the map that sends an element in K\{0} to its leading
(lowest) exponent of x and sends 0 to ∞. It induces a map from a projective space over K to a tropical

projective space. Let L be a d-dimensional vector subspace in Kn, and let P ∈ P
([n]

d )−1

K be its Plücker vector,
i.e. the the vector of maximal minors of a matrix whose row space is L. Then deg(P ) is a tropical Plücker
vector. If a tropical Plücker vector arises in this way, then the corresponding tropical linear space coincides
with the image deg(L) ⊂ Tn and is called realizable. If there is a representative Plücker vector containing only
complex numbers, then we get the realizable constant coefficient case. For a linear form f = a1X1+· · ·+anXn

with ai ∈ K, let its tropicalization be the tropical linear form (deg(a1) � x1) ⊕ · · · ⊕ (deg(an) � xn). The
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circuits defined in the Introduction are precisely the tropicalizations of linear forms with minimal support
in the orthogonal complement of L. We will refer to a set of linear forms over Kn as a tropical basis if their
tropicalizations define the tropical linear space.

The tropical determinant of an r × r square matrix A = [aij ] is defined to be
⊕

σ∈Sr

(a1σ1 � · · · � arσr
), where Sr is the symmetric group of order r!.

The tropical rank of a matrix is the largest integer r such that there exists a submatrix which is tropically
non-singular, i.e. the minimum in the tropical determinant is not unique.

In the special case of realizable tropical linear spaces all of whose tropical Plücker coordinates are non-∞,
we conjecture a criterion for a set of linear forms to form a tropical basis, which generalizes Theorem 5.3 in
[7].

Theorem 4.1. Let L be a n − k dimensional linear subspace in Kn all of whose Plücker coordinates
are non-zero. Let M ∈ Km×n, m ≥ k, be a matrix whose rows are non-zero elements in the orthogonal
complement of L. If the rows of M form a tropical basis for L, then any k columns of deg(M) have tropical
rank k.

Proof. Suppose that there is a m× k submatrix A of deg(M) with tropical rank less than k. Then by
[4, Theorem 5.5] the Kapranov rank of A is less than k, which means that there is an m× k matrix A′ over
K with rank less than k such that A = deg(A′). Let v ∈ Kk be a non-zero vector in the kernel of A′. Then
deg(v) is in the tropical prevariety in Tk defined by the m rows of A. We can augment deg(v) to a vector
in the tropical prevariety of the rows of deg(M) by putting ∞ in the other n − k coordinates. The support
of this vector has size at most k, however, the points in the tropical linear space have support size at least
k + 1 because of the hypothesis that all the tropical Plücker coordinates are finite. Hence the prevariety is
not equal to the tropical linear space, so the rows of M do not form a tropical basis. �

Conjecture 4.2. The converse of Theorem 4.1 holds.

Example 4.3. The proposition and the conjecture do not apply when some of the tropical Plücker
coordinates are ∞. Consider the 2-dimensional linear subspace of K4 which is the kernel of the matrix

M =





1 0 1 1
0 1 1 1
1 −1 0 0



 , whose degree is





0 ∞ 0 0
∞ 0 0 0
0 0 ∞ ∞



 .

The circuits are precisely these three rows, hence the 0/1 points in the tropical variety are (0, 0, 0, 1), (0, 0, 1, 0), (1, 1, 0, 0).
The last two columns of deg(M) have tropical rank only 1, but the rows of M form a tropical basis. Notice
that the corresponding tropical Plücker coordinate is ∞. The first two rows of the matrix deg(M) have the
same tropical rank as the whole matrix in every subset of columns, but they do not form a tropical basis.
Hence we cannot determine whether a set of linear forms is a tropical basis just from the tropical ranks. �

In the cases when Theorem 4.1 and its converse are applicable, we would get an algorithm for checking
if a given matrix is a tropical basis.

5. Parametrizations of tropical linear spaces

So far we have been looking at tropical linear spaces as intersections of tropical hyperplanes. In this
section, we will look at them as images of tropical linear maps.

Let A be an n × d matrix over K whose image (column space) is L. Let deg(A) be the matrix whose
entries are the degrees of entries in A. This matrix defines a tropical linear map deg(A) : Td → Tn,
v 7→ deg(A) � v, where the tropical matrix multiplication � is defined by replacing sums with minima and
products with sums in the evaluation of the ordinary matrix product.

For any such A, we have

(5.1) deg(L) = deg(im(A)) ⊇ im(deg(A))

The containment holds because the columns of deg(A) are in the tropical linear space deg(L), and so are their
tropical linear combinations, since tropical linear spaces are closed under taking tropical linear combinations.
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Similar expressions hold in much more generality for tropical varieties, as shown in [6]. We are interested in
knowing when the equality deg(L) = im(deg(A)) is attained.

A cocircuit of the linear space L is an element in L whose support is minimal with respect to inclusion.
They are circuits of the orthogonal complement L⊥. Two cocircuits with the same support must be constant
multiples of each other, since otherwise one coordinate can be cancelled to get a vector with a smaller
support.

Lemma 5.1. Every nonzero v ∈ L can be written as v = v1 + · · · + vd for some cocircuits vi ∈ L such
that deg(v) = deg(v1) ⊕ · · · ⊕ deg(vd).

Proof. If v is a cocircuit, then we are done.
Suppose not. Let u ∈ L be a cocircuit with supp(u) ⊂ supp(v). Then for c ∈ K with large enough degree,

we have deg(cu) ≥ deg(v) coordinatewise. Pick such a c so that cu and v coincide in at least one coordinate,
i.e. supp(v − cu) ( supp(v). Let v1 = cu. Since deg(v1) ≥ deg(v), we have deg(v) = deg(v1) ⊕ deg(v − v1).

If v− v1 is not a cocircuit, then we can repeat the same argument on v− v1, which has a strictly smaller
support. We will eventually end up with cocircuits with the desired properties. �

Theorem 5.2. The equation deg(L) = im(deg(A)) holds if and only if every cocircuit in L is represented
in A.

Proof. The “if” direction follows immediately from previous Lemma. For the “only if” direction,
suppose there is a cocircuit c ∈ L whose support is not represented in A. Then deg(c) ∈ deg(L)\im(deg(A))
since any vector in im(deg(A)) with finite coordinates in supp(c) also has finite coordinates outside supp(c).

�

This theorem for the constant coefficient case appeared in [4, Proposition 7.5].
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