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Abstract. We study double Hurwitz numbers in genus zero counting the number of covers CP
1
→ CP

1

with two branching points with a given branching behavior. By the recent result due to Goulden, Jackson
and Vakil, these numbers are piecewise polynomials in the multiplicities of the preimages of the branching
points. We describe the partition of the parameter space into polynomiality domains, called chambers, and
provide an expression for the difference of two such polynomials for two neighboring chambers. Besides, we
provide an explicit formula for the polynomial in a certain chamber called totally negative, which enables
us to calculate double Hurwitz numbers in any given chamber as the polynomial for the totally negative
chamber plus the sum of the differences between the neighboring polynomials along a path connecting the
totally negative chamber with the given one.

1. Introduction and results

Let µ = (µ1, . . . , µm) be a partition of an integer d. The Hurwitz number hg
µ is the number of genus g

branched covers of CP1 with branching corresponding to µ over a fixed point (usually identified with ∞)
and an appropriate number of fixed simple branching points. Recall that each cover is counted with the
weight c−1, where c is the number of automorphisms of the cover.

Hurwitz numbers possess a rich structure explored by many authors in different fields, such as algebraic
geometry, representation theory, integrable systems, combinatorics, and mathematical physics. Being very
far from trying to describe all these achievements, we mention only the so-called ELSV-formula (see [1, 2, 6])
that relates Hurwitz numbers to intersection theory on the moduli space of curves. This connection has led
to many consequences, including several new proofs of Witten’s conjecture.

Let ν = (ν1, . . . , νn) be another partition of the same integer d. The double Hurwitz number hg
µ;ν is the

number of genus g branched covers of CP1 with branchings corresponding to µ and ν over two fixed points
(in what follows we identify them with ∞ and 0, respectively) and an appropriate number of fixed simple
branching points. We denote the latter number rg

µ;ν ; by the Riemann–Hurwitz theorem, rg
µ;ν = m+n+2g−2.

To simplify the exposition, we assume that the points mapped to ∞ and 0 are labelled, so the double Hurwitz
numbers under this convention are |Autµ||Aut ν| larger than they would be under the usual convention;
here Autµ and Aut ν stand for the groups of symmetries of the sets µ and ν, respectively. It follows from the
Riemann existence theorem that double Hurwitz number can be redefined in purely combinatorial terms as
|Autµ||Aut ν|/d! times the number of transitive ordered factorizations of the unity in the symmetric group
Sd. The latter quantity is the number of (r+ 2)-tuples (σ1, τ1, τ2, . . . , τr, σ2) such that τi are transpositions,
r = rg

µ;ν , the cycle type of σ1 equals µ, the cycle type of σ2 equals ν, σ−1
1 τ1 · · · τrσ2 = id, and the group

generated by σ1, τ1, . . . , τr acts transitively on [1, d].
Most of the known results concerning double Hurwitz numbers treat only the so-called one-part (or

polynomial) case, when m = 1 and n is arbitrary. One-part double Hurwitz numbers in genus zero where
studied in [13] (see also [12] for an earlier version of the same result). It is proved there that

(1.1) h0
(d);ν = (n− 1)!dn−2;

2000 Mathematics Subject Classification. Primary 14H10; Secondary 05E05, 14N35.
Key words and phrases. double Hurwits numbers, piecewise polynomiality.

1



2 Sergei Shadrin, Michael Shapiro, and Alek Vainshtein

recall that n− 1 = r0(d);ν . In fact, a combinatorial result much more general than (1.1) was obtained already

in [4] using Lagrange inversion; in [13] the same formula was reproved by methods of algebraic geometry,
and in this way its algebro-geometric meaning was clarified.

Much less is known for double Hurwitz numbers with arbitrary µ and ν. In fact, there are only two
general results. First, it is proved in [9] that the exponent of the generating function for the double Hurwitz
numbers is a τ -function for the Toda hierarchy of Ueno and Takasaki. Second, Theorem 2.1 in [5] states that
for fixed g, m, and n, double Hurwitz numbers are piecewise polynomial in variables µ1, . . . , µm, ν1, . . . , νn,
and that the highest degree of this piecewise polynomial is constant and equal to m+ n+ 4g− 3. Moreover,
it is proved in [5] that for genus zero case this piecewise polynomial is homogeneous.

In a different direction, Theorem 4.1 of the same paper treats hg
µ;ν as a function of g for fixed partitions

µ and ν. In principle, any such function can be obtained by recursive computation; the only case done
explicitly is m = n = 2 and µ1 > ν1 > ν2 > µ2. Similar results are also obtained in [8] for all double Hurwitz
numbers of degree at most 5.

Still another approach suggested in [5] provides exact formulas for double Hurwitz numbers in genus
zero when m = 2 or m = 3. In particular,

(1.2) h0
µ1,µ2;ν =

n!|Aut ν|

d

∑ l(ρ)!
∏

j>1 ρj

|Aut ρ||Aut σ||Aut τ |
(µ1 − |σ|)(µ2 − |τ |)µ

l(σ)−1
1 µ

l(τ)−1
2 ,

where the summation is over partitions ρ = (ρ1, . . . , ρl(ρ)), σ = (σ1, . . . , σl(σ)), τ = (τ1, . . . , τl(τ)) with

ρ ∪ σ ∪ τ = ν and |σ| =
∑l(σ)

i=1 σi < µ1, |τ | =
∑l(τ)

i=1 τi < µ2, see Corollary 5.11 in [5].
In this note we study the homogeneous piecewise polynomial of degree m + n − 3 defining double

Hurwitz numbers h0
µ;ν . To formulate the results we need to introduce some notation. For any sequence

a = (a1, . . . , ak) and any subset K ⊆ [1, k] we denote by a(K) the subsequence of a consisting of terms ai,
i ∈ K, and by aK the sum of all elements in a(K). We consider x1 = µ1, . . . , xm = µm, y1 = ν1, . . . , yn = νn

as coordinates of a point in Rm+n. The parameter space is the cone in Rm+n given by the inequalities
x1 ≥ · · · ≥ xm ≥ 0, y1 ≥ · · · ≥ yn ≥ 0 and the equality x[1,m] = y[1,n]. A resonance is a hyperplane xI = yJ ,
where I ⊂ [1,m] and J ⊂ [1, n] are proper subsets. The connected components of the complement to the
union of all resonances are called chambers.

Theorem 1.1. Let (µ, ν) vary within a closure of a chamber, then double Hurwitz numbers h0
µ;ν are

given by a homogeneous polynomial of degree m+ n− 3.

Consider a chamber C, and let PC be the corresponding homogeneous polynomial. The most convenient
way to identify C is to pick up a reference point (α, β) ∈ C; in this case we write Pα;β instead of PC .
Observe that the only role of the reference point (α, β) is to indicate the choice of the chamber, and that its
coordinates are not necessary integers. It is clear that Pµ;ν(µ, ν) = h0

µ;ν ; however, PC(µ′, ν′) may differ from

h0
µ′;ν′ if (µ′, ν′) /∈ C.

The total number of resonances is equal to 2(2m−1 − 1)(2n−1 − 1), since each resonance xI = yJ can be
also written as xĪ = yJ̄ , where bar stands for the complement. In what follows we always assume that 1 /∈ I.
Therefore, each chamber is defined by a sequence of w = 2(2m−1 − 1)(2n−1 − 1) signs of the expressions
xI − yJ ; observe that the total number of chambers is less than 2w, since certain combinations of signs are
impossible. We say that two chambers are neighboring along the resonance xI = yJ if the corresponding
sign sequences differ only in the position corresponding to this resonance.

Let C and C′ be two chambers neighboring along the resonance xI = yJ ; without loss of generality we
assume that xI − yJ > 0 in C.

Theorem 1.2. Let (µ, ν) be an arbitrary point in C. Then

PC − PC′ =

(
m+ n− 2

|I| + |J | − 1

)
(xI − yJ)Pµ(Ī),µI−νJ ;ν(J̄)Pµ(I);ν(J),µI−νJ

.

Remark 1. Here and in what follows we omit the arguments of polynomials whenever this does not
lead to a confusion. Usually, the arguments are formed from the components of x and y according to the
same rules as the coordinates of the reference point are formed from the parts of µ and ν. For example,
Pµ(I);ν(J),µI−νJ

has |I| + |J | + 1 arguments. The first |I| of them are xi, i ∈ I, then follow yj , j ∈ J , and
the last argument is xI − yJ .
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Consider the totally negative chamber, that is, the one for which all the signs in the corresponding
sequence are negative. The following result was conjectured in [5] (see Conjecture 5.10).

Theorem 1.3. The polynomial corresponding to the totally negative cell is given by (m+n−2)!xn−1
1 (x1+

· · · + xm)m−2.

Theorems 1.1–1.3 give rise to recurrence relations expressing double Hurwitz numbers of degree d via
double Hurwitz numbers of lesser degrees. In general, these relations are rather cumbersome, however, for
m = 2 one gets a very simple explicit formula, which is easier than (1.2). The details of the corresponding
computations are presented in Section 2. Section 3 contains a sketch of the proof of the main theorems.
The proof is divided into a sequence of lemmas. The proofs of the lemmas involve certain techniques from
algebraic geometry and are omitted in this version; they will be published elsewhere.

The authors are grateful to Max-Planck-Institut für Matematik, Bonn, and to Institut Mittag-Leffler,
Djursholm, Sweden, for hospitality in Summer 2004, and Fall 2006. Our sincere thanks go to M. Kazaryan,
R. Kulkarni and D. Zvonkine for useful discussions. S.S. was supported by the grants RFBR-05-01-01012-a,
RFBR-05-01-02806-CNRS-a, NSh-1972.2003.1, MK-5396.2006.1, NWO-RFBR-047.011.2004.026 (RFBR-05-
02-89000-NWO-a), by the Göran Gustafsson foundation, and by Pierre Deligne’s fund based on his 2004
Balzan prize in mathematics. M.S. was supported by the grants DMS-0401178 and PHY-0555346. M.S and
A.V. were supported by the grant BSF-2002375.

2. Computations

2.1. General recurrence. To find a recurrence relation for the double Hurwitz number h0
µ;ν via The-

orems 1.1–1.3, one has to pick a path connecting the totally negative chamber with the chamber containing
the point (µ, ν) in the parameter space. If (µ, ν) lies on one or more resonances, one can choose any
of the adjacent chambers in an arbitrary way. By multiplying all coordinates by a sufficiently big inte-
ger t > dm+n and perturbing slightly the resulting point within the same chamber, one can ensure that
the obtained point (tµ, ν′) is in general position, that is, ν′I = ν′J if and only if I = J . Pick the point
(td−m(m− 1)/2,m− 1,m− 2, . . . , 1, ν′) in the totally negative chamber and connect it with (tµ, ν′) by the
following path consisting of m− 1 segments. The first segment is of the form

(td−m(m− 1)/2 − s,m− 1 + s,m− 2, . . . , 1, ν′), s = 0, 1, . . . , tµ2 −m+ 1,

the second segment is of the form

(td− tµ2 − (m− 1)(m− 2)/2 − s, tµ2,m− 2 + s,m− 3, . . . , 1, ν′), s = 0, 1, . . . , tµ3 −m+ 2,

and so on. It is easy to see that each point on this path belongs to at most one resonance. To formulate
the recurrence relation, pick arbitrary numbers ε3, ε4, . . . , εm and δ satisfying inequalities 0 < δ < εm <
· · · < ε3 < 1/m and denote ε = (ε3, . . . , εm); the exact values of εi and δ do not have any meaning, since
these numbers will be only used to indicate the corresponding chamber. Clearly, a resonance xI = yJ is
intersected by the above path, and hence contributes to h0

µ;ν , if and only if µI > νJ . If this is the case, we
consider I = {i1, . . . , i|I|} and define

k = min{j ∈ [1, |I|] : µi1 + · · · + µij
> νJ}.

Any i ∈ [1,m], i 6= 1, ik, can be related to one of the four subsets:

I1 = {i ∈ I : i < ik}, Ī1 = {i /∈ I : 1 < i < ik},

I2 = {i ∈ I : i > ik}, Ī2 = {i /∈ I : i > ik}.

We thus get the following result.

Theorem 2.1. Double Hurwitz numbers are given by

h0
µ;ν = (m+ n− 2)!dm−2µn−1

1 +
∑

µI>νJ

(
m+ n− 2

|I| + |J | − 1

)
(µI − νJ)

× Pξ1,µ(Ī1),ε(Ī2),δ;ν(J̄)(µ1, µ(Ī1 ∪ Ī2), µI − νJ , ν(J̄))Pµ(I1),ξ2,ε(I2);ν(J),δ(µ(I1), µik
, µ(I2), ν(J), µI − νJ),

where ξ1 = νJ̄ − µĪ1
− εĪ2

− δ, ξ2 = νJ − µI1 − εI2 + δ.
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2.2. Two-part double Hurwitz numbers. The general expression in Theorem 2.1 looks very cum-
bersome. However, in the case of two-part double Hurwitz numbers, when m = 2, it can be written in a
very simple way. Indeed, in this case all the resonances are of the form x2 = yJ , therefore I = {2}, ik = 2,
I1 = Ī1 = I2 = Ī2 = ∅. Therefore Theorem 2.1 yields

h0
µ1,µ2;ν = n!µn−1

1 +
∑

µ2>νJ

(
n

|J |

)
(µ2 − νJ)PνJ̄−δ,δ;ν(J̄)(µ1, µ2 − νJ , ν(J̄))PνJ +δ;ν(J),δ(µ2, ν(J), µ2 − νJ).

The second polynomial in the right hand side corresponds to one-part double Hurwitz numbers of total
degree µ2 with |J | + 1 zeros, hence, by (1.1),

PνJ+δ;ν(J),δ(µ2, ν(J), µ2 − νJ) = |J |!µ
|J|−1
2 .

The first polynomial in the right hand side corresponds to the totally negative chamber for two-part double
Hurwitz numbers of total degree d− νJ with n− |J | zeros, hence, by Theorem 1.3,

PνJ̄−δ,δ;ν(J̄)(µ1, µ2 − νJ , ν(J̄)) = (n− |J |)!µ
n−|J|−1
1 .

Observe that the first summand in the right hand side of the above formula can be also included in the
regular part of the sum for J = ∅. In what follows we indicate this by writing

∑∅ instead of
∑

.
We thus obtain the following explicit formula for the two-part double Hurwitz numbers in genus zero,

which is simpler than (1.2).

Corollary 2.2. The two-part double Hurwitz numbers are given by

h0
µ1,µ2;ν = n!

∑∅

µ2>νJ

(µ2 − νJ )µ
n−|J|−1
1 µ

|J|−1
2 .

2.3. Three-part double Hurwitz numbers. Consider now the case of three-part double Hurwitz
numbers, when m = 3. Then the first segment of the path intersects resonances of the form x2 = yJ

and x2 + x3 = yJ , while the second segment of the path intersects resonances of the form x3 = yJ and
x2 + x3 = yJ . Therefore, we have the following four types of intersection.

Type 1. I = {2}, ik = 2, I1 = Ī1 = I2 = ∅, Ī2 = {3}.
By Theorem 2.1, the contribution of such an intersection equals

(
n+ 1

|J |

)
(µ2 − νJ )PνJ̄−ε3−δ,ε3,δ;ν(J̄)(µ1, µ3, µ2 − νJ , ν(J̄))PνJ+δ;ν(J),δ(µ2, ν(J), µ2 − νJ).

The second polynomial in the above expression is the same as in the case of two-part double Hurwitz numbers,

and its value is equal to |J |!µ
|J|−1
2 . The first polynomial corresponds to the totally negative chamber for

three-part double Hurwitz numbers of total degree d− νJ with n− |J | zeros, hence, by Theorem 1.3,

PνJ̄−ε3−δ,ε3,δ;ν(J̄)(µ1, µ3, µ2 − νJ , ν(J̄)) = (n− |J | + 1)!µ
n−|J|−1
1 (d− νJ ).

Therefore, the total contribution of all intersections of type 1 equals

(n+ 1)!
∑

µ2>νJ

(µ2 − νJ)µ
n−|J|−1
1 µ

|J|−1
2 (d− νJ).

Type 2. I = {2, 3}, ik = 2, I1 = Ī1 = Ī2 = ∅, I2 = {3}.
By Theorem 2.1, the contribution of such an intersection equals

(
n+ 1

|J | + 1

)
(µ2 + µ3 − νJ)PνJ̄−δ,δ;ν(J̄)(µ1, µ2 + µ3 − νJ , ν(J̄))PνJ−ε3+δ,ε3;ν(J),δ(µ2, µ3, ν(J), µ2 + µ3 − νJ ).

The first polynomial in the above expression we have already encountered in the case of two-part double

Hurwitz numbers, and its value is equal to (n − |J |)!µ
n−|J|−1
1 . The second polynomial corresponds to the

chamber neighboring with the totally negative chamber for two-part double Hurwitz numbers of total degree
µ2 + µ3 with |J | + 1 zeros, hence, by Corollary 2.2,

PνJ−ε3+δ,ε3;ν(J),δ(µ2, µ3, ν(J), µ2 + µ3 − νJ ) = (|J | + 1)!
(
µ
|J|
2 + (µ3 − (µ2 + µ3 − νJ))µ

|J|−1
2

)

= (|J | + 1)!µ
|J|−1
2 νJ .
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Therefore, the total contribution of all intersections of type 2 equals

(n+ 1)!
∑

µ2>νJ

(µ2 + µ3 − νJ)µ
n−|J|−1
1 µ

|J|−1
2 νJ .

Type 3. I = {3}, ik = 3, I1 = I2 = Ī2 = ∅, Ī1 = {2}.
By Theorem 2.1, the contribution of such an intersection equals

(
n+ 1

|J |

)
(µ3 − νJ )PνJ̄−µ2−δ,µ2,δ;ν(J̄)(µ1, µ2, µ3 − νJ , ν(J̄))PνJ+δ;ν(J),δ(µ3, ν(J), µ3 − νJ).

The second polynomial in the above expression is again the same as in the case of two-part double Hurwitz

numbers, and its value is equal to |J |!µ
|J|−1
3 . The first polynomial corresponds to three-part double Hurwitz

numbers of total degree d−νJ with n−|J | zeros, computed in some chamber intersected by the first segment
of our path. To compute these numbers we have to take into account only intersections of types 1 and 2.
By the above reasoning, we get

PνJ̄−µ2−δ,µ2,δ;ν(J̄)(µ1, µ2, µ3 − νJ , ν(J̄)) = (n− |J | + 1)!
∑∅

K⊆J̄

µ2>νK

(µ2 − νK)(d− νJ − νK)µ
n−|J|−|K|−1
1 µ

|K|−1
2

+
∑∅

K⊆J̄

µ2>νK

(µ2 + (µ3 − νJ) − νK)µ
n−|J|−|K|−1
1 µ

|K|−1
2 νK .

Therefore, the total contribution of all intersections of type 3 equals

(n+ 1)!
∑

µ3>νJ

(µ3 − νJ)µ
|J|−1
3

∑∅

K⊆J̄

µ2>νK

µ
n−|J|−|K|−1
1 µ

|K|−1
2 (µ2(d− νJ) − νK(µ1 + µ2)).

Type 4. I = {2, 3}, ik = 3, Ī1 = I2 = Ī2 = ∅, I1 = {2}.
By Theorem 2.1, the contribution of such an intersection equals

(
n+ 1

|J | + 1

)
(µ2 + µ3 − νJ )PνJ̄−δ,δ;ν(J̄)(µ1, µ2 + µ3 − νJ , ν(J̄))Pµ2,νJ−µ2+δ;ν(J),δ(µ2, µ3, ν(J), µ2 + µ3 − νJ ).

The first polynomial in the above expression we have already encountered in the case of two-part double

Hurwitz numbers, and its value is equal to (n−|J |)!µ
n−|J|−1
1 . The second polynomial corresponds to arbitrary

two-part double Hurwitz numbers of total degree µ2 +µ3 with |J |+1 zeros. By Corollary 2.2, such numbers
are given by

Pµ2,νJ−µ2+δ;ν(J),δ(µ2, µ3, ν(J), µ2 + µ3 − νJ ) = (|J | + 1)!
∑∅

K⊆J

νJ−µ2>νK

(µ3 − νK)µ
|J|−|K|
2 µ

|K|−1
3

+ (|J | + 1)!
∑∅

K⊆J

νJ−µ2>νK

(µ3 − νK)(µ3 − νK − (µ2 + µ3 − νJ))µ
|J|−|K|−1
2 µ

|K|−1
3 ;

the first sum in the right hand side corresponds to resonances not involving the last y-coordinate, and the
second one to those involving this coordinate. Therefore, the total contribution of all intersections of type 4
equals

(n+ 1)!
∑

µ2<νJ <µ2+µ3

(µ2 + µ3 − νJ)µ
n−|J|−1
1

∑∅

K⊆J

νJ−µ2>νK

(µ3 − νK)µ
|J|−|K|−1
2 µ

|K|−1
3 (νJµ3 − νK(µ2 + µ3)).

Collecting all the summands and taking into account the contribution of the totally negative chamber,
we get the following result.
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Corollary 2.3. The three-part double Hurwitz numbers are given by

h0
µ1,µ2,µ3;ν

(n+ 1)!
=

∑∅

µ2>νJ

(µ2 − νJ)µ
n−|J|−1
1 µ

|J|−1
2 AJ +

∑

µ3>νJ

(µ3 − νJ)µ
|J|−1
3

∑∅

K⊆J̄

µ2>νK

µ
n−|J|−|K|−1
1 µ

|K|−1
2 BJK

+
∑

µ2<νJ<µ2+µ3

(µ2 + µ3 − νJ )µ
n−|J|−1
1

∑∅

K⊆J

νJ−µ2>νK

(µ3 − νK)µ
|J|−|K|−1
2 µ

|K|−1
3 CJK ,

where AJ = dµ2 − νJ(µ1 + µ2), BJK = (d− νJ)µ2 − νK(µ1 + µ2), and CJK = νJµ3 − νK(µ2 + µ3).

3. A sketch of the proof

3.1. Integral representation for double Hurwitz numbers. Define the Hurwitz space H0
µ;ν as

the space of degree d meromorphic functions on genus 0 curves having m + n − 2 simple critical values
z1, . . . , zm+n−2 and monodromies given by µ and ν over two other points x and y; the functions are considered
modulo SL(2,C)-action in the image. We assume that all preimages of the points x, y, z1, . . . , zm+n−2 are
labelled. The Lyashko–Looijenga map ℓℓ that takes a function f ∈ H0

µ;ν to the points x, y, z1, . . . , zm+n−2 can

be viewed as an unramified covering of degree h0
µ;ν(d− 2)!m+n−2 over the moduli space M0,m+n. It is well

known that ℓℓ extends continuously to the mapping ℓℓ : H
0

µ;ν → M0,m+n, where H
0

µ;ν is the compactification

of H0
µ;ν by admissible covers and M0,m+n is the Deligne–Mumford compactification of the moduli space of

genus 0 curves with m + n marked points. On the other hand, let st : H0
µ;ν → M0,m+n+(m+n−2)(d−1) be

the mapping that takes a function f to the set of all preimages of the points x, y, z1, . . . , zm+n−2 and let π :
M0,m+n+(m+n−2)(d−1) → M0,m+n be the projection that forgets the preimages of the points z1, . . . , zm+n−2.

Both these mappings extend continuously to the mappings between the compactified spaces st : H
0

µ;ν →

M0,m+n+(m+n−2)(d−1) and π : M0,m+n+(m+n−2)(d−1) → M0,m+n. Denote by x1, . . . , xm the preimages
of x having multiplicities µ1, . . . , µm, and by y1, . . . , yn the preimages of y having multiplicities ν1, . . . , νn.
Finally, denote by D the divisor on M0,m+n+(m+n−2)(d−1) whose generic point is a two-component curve
such that x1 lies on one component and x2, . . . , xm, y1, . . . , yn lie on the other component.

Lemma 3.1. One has

h0
µ;ν = (m+ n− 2)!µm+n−3

1 + (d− 2)!2−m−n
∑

u+v=m+n−4

µ1

∫

st(H
0
µ;ν)

D (µ1π
∗ψ(x1))

u
(st∗ ℓℓ

∗ψ(x))v ,

where ψ(p) is the first Chern class of the cotangent bundle at the point p.

3.2. Encoding irreducible components of st(H
0

µ;ν)∩D. In view of Lemma 3.1, we will be interested

in the description of the irreducible components of st(H
0

µ;ν) ∩D. Let f be a function whose image belongs
to this intersection. Points x and y on the target curve of f belong to different components. Moreover,
the number of components is exactly two, for the dimensionality reasons. Therefore, the source curve of f
has a number of double points, which are all mapped to the unique double point on the target curve. The
components of the source curve are of two types: those covering the component of the target curve containing
x, and those covering the component of the target curve containing y. Each component of the first type
contains one or more preimages of x, and each component of the second type contains one or more preimages
of y. Finally, the component of the source curve containing x1 does not contain any other preimages of x.

The irreducible components of st(H
0

µ;ν) ∩ D can be encoded by geometric trees in the following way.

Consider two arbitrary partitions [1,m] = ⊔k
i=1Ii, [1, n] = ⊔l

j=1Jj , such that all parts Ii and Jj are nonempty
and I1 = {1}. Let T be a tree viewed as a bipartite graph with the vertices I1, . . . , Ik in one part and J1, . . . , Jl

in the other part and let γe be a weight assigned to an edge e of T in such a way that the sum of γe over all
edges incident to an arbitrary vertex Ii equals µIi

, and the sum of γe over all edges incident to an arbitrary
vertex Jj equals νJj

. Evidently, γe are defined by the above condition in a unique way, and each γe is an
integer. We say that T is a geometric tree if the following three conditions are satisfied:

(i) at least one among I1, . . . , Ik is not a singleton;
(ii) all γe are positive;
(iii) I1 is a leaf of T .
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The first condition follows from the fact that the target curve of f is stable. A similar condition for
J1, . . . , Jl follows from (iii) and hence is omitted. The second condition follows from the fact that edges of
T correspond to double points of the source curve and weights are the multiplicities at these double points.
The third condition is the definition of D. The set of all geometric trees is denoted by Tµ;ν , the irreducible

component of st(H
0

µ;ν) ∩D encoded by a geometric tree T ∈ Tµ;ν is denoted by DT .

Example 1. Let µ = (4, 2, 1), ν = (5, 2). This data defines three geometric trees, presented on Fig. 1a.
Three examples of non-geometric trees defined by the same data are given on Fig. 1b. The vertices are
labelled by the corresponding subsets of µ and ν, and the edges are labelled by the weights γe.

4

2,1

5,2

4

3

4

2

1

5

2

4

1
1
1

4 5

2,1 2

4

1

2

4

2

1

4

1

2

2

5

4

−2
3
2

2

5
1

4

0
2

5,2

4

2

1

4

2

1

a) b)

Figure 1. a) Geometric trees; b) Several non-geometric trees

Lemma 3.2. The set of geometric trees is an invariant of a chamber.

The integral featuring in Lemma 3.1 can be rewritten as

(3.1)

∫

st(H
0
µ;ν)

D (µ1π
∗ψ(x1))

u
(st∗ ℓℓ

∗ψ(x))v =
∑

T∈Tµ;ν

δT

∫

DT

(µ1π
∗ψ(x1))

u
(st∗ ℓℓ

∗ψ(x))v,

where δT is the multiplicity arising from the non-transversal intersection of st(H
0

µ;ν) and D. This multiplicity
can be calculated as follows.

Lemma 3.3. The multiplicity δT is given by

δT =
1

µ1

∏

e∈T

γe.

3.3. Essential geometric trees. We say that a geometric tree T ∈ Tµ;ν is essential if all vertices Jj

except for the one connected to I1 are singletons. The set of all essential geometric trees for a given pair
(µ, ν) is denoted Eµ;ν . As follows immediately from Lemma 3.2, Eµ;ν is an invariant of a chamber. The
importance of this notion is revealed in the following statement. Denote by I(T, u, v) the integral in the
right hand side of (3.1).

Lemma 3.4. For any inessential tree T ∈ Tµ;ν \ Eµ;ν one has I(T, u, v) = 0.

The value of the integral I(T, u, v) = 0 for essential trees is calculated in the following proposition.

Lemma 3.5. For any essential tree T ∈ Eµ;ν one has

I(T, u, v) =

{
(d− 2)!rr!µu

1

∏k
i=1

h0
µ(Ii);γ(Ii)

ri!

∏
j∈J̄1

ν−1
j if u = |J1| + deg J1 − 3

0 otherwise,

where r = m+ n− 2 and ri = |Ii| + deg Ii − 2.

Let us take a more precise look at essential geometric trees. The structure of such trees is very simple,
as shown on Fig. 2. We denote µ-vertices by circles and ν-vertices by squares. Singletons are white and
non-singletons are black. An essential geometric tree has a unique black square vertex denoted J1. All the

other black vertices are circles; we denote them Îi, i = 1, . . . , k̂. Note that the collection of all Îi’s forms a

proper subset of the initial collection of all Ii’s. For any black circle vertex Îi we denote by Ĵi the (possibly

empty) union of all white squares incident to it. Note that in general Ĵi does not coincide with any of the
initial Jj .
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Figure 2. Essential geometric trees

We can now represent double Huritz numbers as a sum over the set of essential geometric trees of products
of double Hurwitz numbers of a smaller size. For unification purposes, we extend the set of essential geometric
trees by adding the tree with m white circle vertices corresponding to µi, and no black circle or white square
vertices. The extended set is denoted E∗

µ;ν .

Theorem 3.6. Double Hurwitz numbers are given by

(3.2) h0
µ;ν = (m+ n− 2)!

∑

T∈E∗

µ;ν

µuT

1

bk∏

i=1

(µbIi
− ν bJi

)
h0

µ(bIi);ν∗( bJi)

(|Îi| + |Ĵi| − 1)!
,

where uT = |J1|+ deg J1 − 3 and ν∗(Ĵi) is obtained from ν(Ĵi) by insertion of µbIi
− ν bJi

at the proper place.

3.4. Proofs of Theorems 1.1–1.3. Let us start from the following observation.

Proposition 3.7. Resonances for the double Hurwitz numbers h0
µ(bIi);ν∗( bJi)

correspond bijectively to

resonances xI = yJ for h0
µ;ν with I ⊂ Îi, J ⊂ Ĵi.

The proof of Theorem 1.1 follows immediately from Lemma 3.2, Theorem 3.6 and Proposition 3.7 by
induction over m+ n. The base of induction is formed by the cases when either m or n equals 1, and there
are no resonances.

To prove Theorem 1.2, observe that by Proposition 3.7, (3.2) can be rewritten as

Pµ;ν = (m+ n− 2)!
∑

T∈E∗

µ;ν

xuT

1

bk∏

i=1

(xbIi
− y bJi

)
P

µ(bIi);ν∗( bJi)

(|Îi| + |Ĵi| − 1)!
.

We denote by QT
µ;ν the contribution of a tree T to the right hand side of (3.6).

Assume that (µ, ν) ∈ C and (µ′, ν′) ∈ C′. Clearly, E∗
µ′;ν′ ⊂ E∗

µ;ν . Therefore, the expression for Pµ;ν may
change for two reasons:

1) birth of new essential geometric trees, and
2) changes in the expressions for QT

µ;ν .

Let Eres be the set of essential geometric trees T ∈ Eµ′;ν′ such that QT
µ;ν 6= QT

µ′;ν′ , and let Enew =

Eµ;ν \ Eµ′;ν′ .

Lemma 3.8. There exists a bijection between Eres ∪ Enew and E∗
µ(Ī),µI−νJ ;ν(J̄)

.

The bijection Φ is presented on Figure 3 below. The upper part of the figure corresponds to the trees
in Enew, the lower part corresponds to the trees in Eres. The asterisque stands for the additional index
corresponding to µI − νJ in E∗

µ(Ī),µI−νJ ;ν(J̄)
.

It remains to prove Theorem 1.3. We start from expression (3.2). Note that essential geometric trees for
the totally negative chamber have a very simple structure: they do not have white square vertices. Therefore,

µbIi
− ν bJi

= µbIi
and h0

µ(bIi);ν∗( bJi)
= (|Îi|−1)!µ

|bIi|−2
bIi

. Finally, |J1| = n, and hence the double Hurwitz numbers

for the totally negative chamber are given by

(m+ n− 2)!µn−1
1

m−1∑

k=1

µk−1
1

∑

I1,...,Ik

k∏

i=1

µ
|Ii|−1
Ii

,



ON DOUBLE HURWITZ NUMBERS IN GENUS 0 9

T2

T1T1
I

J

K   IU

L

J

L
UK   *

*

T2

T (T)Φ

Figure 3. The definition of the bijection Φ

where the inner sum is taken over all unordered partitions of [2,m] into k nonempty parts I1, . . . , Ik. It is
easy to see that

(3.3)
m−1∑

k=1

xk
1

∑

I1,...,Ik

k∏

i=1

x
|Ii|−1
Ii

= x1(x1 + · · · + xm)m−2,

since both parts of the above formula enumerate trees on [1, n] rooted at 1 classified according to the degrees
of the vertices (see e.g. Cayley’s tree volume formula in [10]). Therefore, the double Hurwitz numbers in
question equal (m+ n− 2)!µn−1

1 (µ1 + · · · + µm)m−2, as required.

Remark 2. Identity (3.3) is a Hurwitz type multinomial identity, see [10] and references therein. Iden-
tities of this kind were discovered by Hurwitz in [7] and, apparently, used by him in his studies of Hurwitz
numbers (see [11] for a conjectural reconstruction of the original Hurwitz derivation for h0

µ). It is interesting
to note that such identities arose again recently in connection with Gromov–Witten invariants in [3].
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