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The Cyclic Sieving Phenomenon for Faces of Generalized Cluster Complexes
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Abstract. The notion of cyclic sieving phenomenon was introduced by Reiner, Stanton, and White as a
generalization of Stembridge’s q = −1 phenomenon. The generalized cluster complexes associated to root
systems were given by Fomin and Reading as a generalization of the cluster complexes found by Fomin and
Zelevinsky. In this paper, the faces of various dimensions of the generalized cluster complexes in type An,
Bn, Dn, and I2(a) are shown to exhibit the cyclic sieving phenomenon under a cyclic group action. For the
cluster complexes of exceptional type E6, E7, E8, F4, H3, and H4, a verification for such a phenomenon on
their maximal faces is given.

1. Introduction

In [8], Reiner, Stanton, and White introduced the notion of cyclic sieving phenomenon as a generalization
of Stembridge’s q = −1 phenomenon for generating functions of a set of combinatorial structures with a
cyclic group action. Namely, a triple (X, X(q), C) consisting of a finite set X , a polynomial X(q) ∈ Z[q]
with the property that X(1) = |X |, and a cyclic group C that acts on X is said to exhibit the cyclic sieving
phenomenon if for every c ∈ C,

(1) [X(q)]q=ω = |{x ∈ X : c(x) = x}|,

where the complex number ω is a root of unity of the same multiplicative order as c. Equivalently, if X(q)
is expanded as X(q) ≡ a0 + a1x + · · · + an−1x

n−1 (mod qn − 1), where n is the order of C, then ak counts
the number of orbits on X under C, the stabilizer-order of which divides k. In particular, a0 counts the
total number of orbits, a1 counts the number of free orbits, and a2 − a1 is the number of orbits that have a
stabilizer of order 2. This paper is motivated by the following concrete example. Here we use the notation
[

n
i

]

q
:=

[n]!q
[i]!q[n−i]!q

, where [n]!q = [1]q [2]q · · · [n]q and [i]q = 1 + q + · · · + qi−1.

Theorem 1.1. ([8, Theorem 7.1]) Let X be the set of dissections of a regular (n + 2)-gon using k

noncrossing diagonals (0 ≤ k ≤ n − 1). Let

(2) X(q) :=
1

[k + 1]q

[

n + k + 1

k

]

q

[

n − 1

k

]

q

.

Let the cyclic group C of order n + 2 act on X by cyclic rotation of the polygon. Then (X, X(q), C) exhibits
the cyclic sieving phenomenon.

Note that X(1) = |X | is the well-known Kirkman-Cayley number. In [4], Fomin and Zelevinsky intro-
duced a simplicial complex ∆(Φ), called cluster complex, associated to a root system Φ, which can be realized
by a combinatorial structure constructed in terms of polygon-dissections. In fact, Theorem 1.1 proves the
cyclic sieving phenomenon for the k-faces of the cluster complex ∆(Φ) in type An−1, under a cyclic group
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generated by a deformation Γ (defined in Section 2) of a Coxeter element of Φ. This connection will be
explained in the next section.

From [4, Theorem 1.9], the number of facets (i.e., maximal faces) of ∆(Φ) can be expressed uniformly
as

(3) Cat(Φ) :=
n

∏

i=1

h + ei + 1

ei + 1
,

known as the generalized Catalan numbers Cat(Φ), where h is the Coxeter number and e1, . . . , en are the
exponents of Φ. In particular, Cat(An−1) = 1

n+1

(

2n
n

)

is the n-th Catalan number. The cyclic group generated

by Γ is of order h + 2. Along with the q-analogue of (3) defined by

(4) Cat(Φ, q) :=
n

∏

i=1

[h + ei + 1]q
[ei + 1]q

,

one of our main results is to prove the following theorem, case by case under the classification of Φ.

Theorem 1.2. Let X be the set of facets of the cluster complex ∆(Φ). Let X(q) := Cat(Φ, q) be defined
in (4). Let the cyclic group C of order h + 2 generated by Γ act on X. Then (X, X(q), C) exhibits the cyclic
sieving phenomenon.

Moreover, in [3], Fomin and Reading defined the generalized cluster complexes ∆s(Φ) associated to a root
system Φ and a positive integer s, which specializes at s = 1 to ∆(Φ). The purpose of this paper is to study
the cyclic sieving phenomenon for the faces of ∆s(Φ), along with a q-analogue X(q) of face numbers, under a
cyclic group action. Making use of Fomin and Reading’s results, we prove the cyclic sieving phenomenon by
a combinatorial approach for ∆s(Φ) in type An, Bn, Dn, and I2(a). For Φ of exceptional type E6, E7, E8,
F4, H3, and H4, although a systematic method is not available, we verify such a phenomenon by computer
for the facets of ∆s(Φ) when s = 1.

This paper is organized as follows. We review backgrounds of cluster complexes and generalized cluster
complexes in Section 2. As the main results of this paper, the cyclic sieving phenomenon for the generalized
cluster complexes in type An, Bn, Dn, and I2(a) are given in Sections 3, 4, 5, and 6, respectively. The cases
of exceptional type are given in Section 7.

2. Backgrounds

In this section, we review basic facts of cluster complexes from [4] and interpret Theorem 1.1 in terms of
cluster complexes (type An−1). Then we review the definition of generalized cluster complexes from [3] and
introduce the main purpose of this paper. Most of this section follows the materials in [3, Sections 2 and 3]

2.1. Cluster complexes. Let Φ be an irreducible root system of rank n. Let Φ>0 denote the set of
positive roots in Φ, and let Π = {αi : i ∈ I} denote the set of simple roots in Φ, where I = {1, . . . , n}.
Accordingly, −Π = {−αi : i ∈ I} is the set of negative simple roots. The set S = {si : i ∈ I} of reflections
corresponding to simple roots αi generates a finite reflection group W that naturally acts on Φ. The pair
(W, S) is a Coxeter system.

Let I = I+∪I− be a partition of I such that each of sets I+ and I− is totally disconnected in the Coxeter
diagram. Let Φ≥−1 = Φ>0 ∪ (−Π). Define the involutions τ± : Φ≥−1 → Φ≥−1 by

τε(α) =

{

α if α = −αi, for i ∈ I−ε,
(
∏

i∈Iε
si

)

(α) otherwise,

for ε ∈ {+,−}. The product Γ = τ−τ+ generates a cyclic group 〈Γ〉 that acts on Φ≥−1. For example,
let Φ be the root system of type A2, with I = {1, 2}. The set Φ≥−1 = {α1, α2, α1 + α2,−α1,−α2} of
roots is shown in Figure 1. Setting I+ = {1} and I− = {2}, one can check that Γ acts on Φ≥−1 by
α1 → −α1 → α1 + α2 → −α2 → α2 → α1.

From [4, Section 3.1], a relation of compatibility on Φ≥−1 is defined by means of Γ such that (i) α, β ∈
Φ≥−1 are compatible if and only if Γ(α) and Γ(β) are compatible; (ii) −αi ∈ −Π and β ∈ Φ>0 are compatible
if and only if the simple root expansion of β does not involve αi. Following [4, p. 983], the cluster complex
∆(Φ) is defined to be the simplicial complex whose faces are subsets of roots in Φ≥−1, which are pairwise
compatible. For Φ in type An, Bn, and Dn, the cluster complex ∆(Φ) can be realized by dissections of
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Figure 1. The set Φ≥−1 in type A2.

a regular polygon such that 〈Γ〉 corresponds to a group action on the dissections by rotation of the given
polygon.

Specifically, consider the root system Φ of type An. Then Φ≥−1 consists of positive roots of the form
αij = αi + αi+1 + · · · + αj , for 1 ≤ i ≤ j ≤ n, and negative simple roots −αi, for 1 ≤ i ≤ n. Let P be a
regular polygon with n + 3 vertices, labeled by {1, 2, . . . , n + 3} counterclockwise. The roots in Φ≥−1 are
identified with the diagonals of P as follows. For 1 ≤ i ≤ n+1

2 , the root −α2i−1 ∈ −Π is identified with
the diagonal connecting vertices i and n + 3 − i. For 1 ≤ i ≤ n

2 , the root −α2i ∈ −Π is identified with the
diagonal connecting vertices i + 1 and n + 3 − i. These diagonals form a ‘snake’ of negative simple roots.
Figure 2 shows this snake in type A5. The positive roots of Φ>0 are identified with the remaining diagonals
as follows. Each αij is identified with the unique diagonal that intersects the diagonals −αi,−αi+1, . . . ,−αj

and no other diagonals in the snake. For example, Figure 3 is a realization of the set Φ≥−1 in type A2.
Under this bijection, every pair of compatible roots is carried to a pair of noncrossing diagonals. Hence

each k-face (i.e., k-element simplex) of the cluster complex ∆(An) corresponds to a dissection of P using
k noncrossing diagonals. Moreover, the map Γ corresponds to a clockwise rotation of P that carries point
2 to point 1, etc. Therefore, Theorem 1.1 can be interpreted in terms of ∆(An−1), i.e., let X be the set
of k-faces of ∆(An−1), let X(q) be the polynomial defined by (2). Then (X, X(q), 〈Γ〉) exhibits the cyclic
sieving phenomenon.
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Figure 2. The snake in type A5.
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Figure 3. A representation for the set Φ≥−1 of roots in type A2.
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2.2. Generalized cluster complexes. Let s be a positive integer. For each α ∈ Φ>0, let α1, . . . , αs

denote the s ‘colored’ copies of α. Define

Φs
≥−1 = {αk : α ∈ Φ>0, 1 ≤ k ≤ s} ∪ {(−αi)

1 : i ∈ I},

i.e., Φs
≥−1 consists of s copies of the positive roots and one copy of the negative simple roots. The relation

of compatibility on Φs
≥−1 can be defined by an s-analogue of Γ. For αk ∈ Φs

≥−1, define

Γs(α
k) =

{

αk+1 if α ∈ Φ>0 and k < s,

(Γ(α))1 otherwise.

By [3, Theorem 3.4], this relation is determined by the following two conditions (i) αk and βl are compatible
if and only if Γs(α

k) and Γs(β
l) are compatible; (ii) (−αi)

1 and βl are compatible if and only if the simple
root expansion of βl does not involve αi. The generalized cluster complex ∆s(Φ) associated to a root system
Φ is defined to be the simplicial complex whose faces are subsets of roots in Φs

≥−1, which are pairwise
compatible.

A feasible q-analogue X(q) of face numbers plays an essential role in the cyclic sieving phenomenon.
Fomin and Reading derived a formula for the face numbers of various dimensions of ∆s(Φ) in terms of
Coxeter numbers and exponents (see [3, Theorem 8.5]). Let fk(Φ, s) denote the k-face number of ∆s(Φ).
For Φ of type An, Bn, Dn, and I2(a), the k-face numbers can be expressed explicitly as follows.

Theorem 2.1. For Φ of type An, Bn, Dn, and I2(a), the face numbers of the generalized cluster complex
∆s(Φ) are given by

(i) fk(An, s) =
1

k + 1

(

s(n + 1) + k + 1

k

)(

n

k

)

,

(ii) fk(Bn, s) =

(

sn + k

k

)(

n

k

)

,

(iii) fk(Dn, s) =

(

s(n − 1) + k

k

)(

n

k

)

+

(

s(n − 1) + k − 1

k

)(

n − 2

k − 2

)

,

(iv) f1(I2(a), s) = sa + 2, and f2(I2(a), s) =
(sa + 2)(s + 1)

2
.

Case (i) of Theorem 2.1 is due to J. H. Przytycki and A. S. Sikora [7] and case (ii) is due to E. Tzanaki
[11]. We remark that Fomin and Reading’s formula is given as a polynomial involving s, which is in the
form of the unique factorization of that polynomial into irreducibles. However, it is impractical to derive
feasible q-analogues X(q) of face numbers from that formula except for k = n. The q-analogues X(q) that
serve our purpose are derived case by case from Theorem 2.1. (See Theorems 3.1, 4.1, 5.1, and 6.1).

For the special case k = n, from [3, Theorem 8.4], the number of facets of ∆s(Φ) can be expressed
uniformly as

(5) Cat(s)(Φ) :=
n

∏

i=1

sh + ei + 1

ei + 1
,

In this paper, we aim to prove the cyclic sieving phenomenon for the generalized cluster complexes
∆s(Φ) in the framework that X is the set of k-faces of ∆s(Φ), C is the cyclic group of order sh+2 generated
by Γs, and X(q) is a q-analogue of the k-face numbers. For Φ of type An, Bn, and Dn, our results rely
on Fomin and Reading’s realization constructed in terms of polygon-dissections [3, Section 5]. Under this
realization, the cyclic group C corresponds to rotation of the given polygon. In type I2(a), we make use of
the graph-representation of ∆s(I2(a)) given in [3, Example 4.4]. For Φ of exceptional type E6, E7, E8, F4,
H3, and H4, a complete verification of such a phenomenon is given only for the facets of ∆s(Φ) and only
when s = 1.

When k = n, our polynomials X(q) for the facets of ∆s(Φ) agree with the generalized q-Catalan numbers
defined by

(6) Cat(s)(Φ, q) :=

n
∏

i=1

[sh + ei + 1]q
[ei + 1]q

.
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As a result, we prove the following conjecture mentioned by Reiner-Stanton-White, for ∆s(Φ) in types An,
Bn, Dn, and I2(a).

Conjecture 2.2. ([9]) For a positive integer s, let X be the set of facets of the generalized cluster

complex ∆s(Φ). Let X(q) = Cat(s)(Φ, q) be defined in (6). Let the cyclic group C of order sh + 2 generated
by Γs act on X. Then (X, X(q), C) exhibits the cyclic sieving phenomenon.

For k < n, our polynomials X(q) for the k-faces of ∆s(Φ) seem to be artificially tailored to serve the
purpose of cyclic sieving phenomenon (especially (9) in type Dn). We are interested in finding the genuine
q-analogue X(q) of face numbers, which involves the Coxeter number and exponents of Φ in the spirit of
(6). Such a polynomial X(q) should not only lead to a unified result for the k-faces of ∆s(Φ) as the one
in Conjecture 2.2 but also be consistent with other combinatorial structures (e.g. noncrossing partitions) in
connection with Coxeter groups. We leave it as an open problem.

Open Problem. What is the genuine q-analogue X(q) of the k-face numbers of ∆s(Φ)?

3. The cyclic sieving phenomenon for ∆s(An−1)

Let P be a regular polygon with sn + 2 vertices labeled by {1, 2, . . . , sn + 2} counterclockwise. Consider
the set of dissections of P into (sj + 2)-gons (1 ≤ j ≤ n − 1) by noncrossing diagonals. Such dissections are
called s-divisible. For convenience, a diagonal in an s-divisible dissection is called s-divisible. Consider a root
system Φ of type An−1. Following [3, Section 5.1], the roots of Φs

≥−1 can be identified with the s-divisible
diagonals of P as follows. For 1 ≤ i ≤ n

2 , the root −α2i−1 is identified with the diagonal connecting points

s(i − 1) + 1 and s(n − i) + 2. For 1 ≤ i ≤ n−1
2 , the root −α2i is identified with the diagonal connecting

points si + 1 and s(n − i) + 2. These n − 1 diagonals form an s-snake of negative simple roots. For each
positive root αij = αi + · · · + αj (1 ≤ i ≤ j ≤ n − 1), there are exactly s diagonals, which are s-divisible,
intersecting the diagonals −αi, . . . ,−αj and no other diagonals in the s-snake. This collection of diagonals
is of the form D, Γ1

s(D), . . . , Γs−1
s (D), for some diagonal D. For 1 ≤ k ≤ s, we identify αk

ij with Γk−1
s (D).

Figure 4 shows the s-snake for s = 3 and n = 4, along with the diagonals identified with the colored roots
α1

23, α2
23, and α3

23. Under this bijection, the k-faces of ∆s(An−1) correspond to the s-divisible dissections of
P using k noncrossing diagonals, and Γs corresponds to clockwise rotation of P carrying point 2 to point 1,
etc.

1

3

−α2

−α1

α 23
1

α 23
2

α 23
3

4

8

11

−α

Figure 4. The s-snake in type A3.

A feasible polynomial for X(q) is the natural q-analogue of Theorem 2.1(i). Define

(7) G(s, n, k; q) =
1

[k + 1]q

[

sn + k + 1

k

]

q

[

n − 1

k

]

q

,

for 0 ≤ k ≤ n − 1. Note that G(s, n, k; 1) = fk(An−1, s). As a generalization of Theorem 1.1, we prove that
the k-faces of ∆s(An−1) exhibit the cyclic sieving phenomenon under the group action 〈Γs〉.
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Theorem 3.1. For positive integers s and n, let X be the set of s-divisible dissections of an (sn+2)-gon
using k noncrossing diagonals. Let the cyclic group C of order sn + 2 act on X by cyclic rotation of the
polygon. Let X(q) := G(s, n, k; q). Then (X, X(q), C) exhibits the cyclic sieving phenomenon.

For example, take s = 2, n = 3, and k = 2. Then X(q) ≡ 2 + q + 2q2 + q3 + 2q4 + q5 + 2q6 + q7

(mod q8 − 1). As shown in Figure 5, there are 12 2-divisible dissections of an octagon using 2 noncrossing
diagonals. These dissections are partitioned into two orbits under a group action by cyclic rotation, one of
which is free and the other has a stabilizer of order 2.

4 5

6

7

81

2

3

4 5

6

7

81

2

3

Figure 5. The 2-divisible dissections of an octagon using 2 noncrossing diagonals.

By verifying condition (1) mentioned in the introduction, Theorem 3.1 is proved by Proposition 3.2 and
Corollary 3.5.

Proposition 3.2. For d ≥ 2 a divisor of sn + 2, let ω be a primitive d-th root of unity. Then

[G(s, n, k; q)]q=ω =































( sn+k+1
2

k+1
2

)(n−2
2

k−1
2

)

if d = 2, k odd, and n even

( sn+2+k
d

− 1
k
d

)(

bn−1
d

c
k
d

)

if d ≥ 2 and d|k,

0 otherwise.

Let X be the set of s-divisible dissections of an (sn + 2)-gon P using k noncrossing diagonals. Let C

be the cyclic group of order sn + 2 acting on X by cyclic rotation of P . For d ≥ 2 a divisor of sn + 2, let
U(s, n, k, d) ⊆ X denote the set of dissections that are invariant under d-fold rotation (i.e., a subgroup Cd of
order d of C generated by a 2π

d
-rotation of P ). In the following, we shall enumerate U(s, n, k, d) to complete

the proof of Theorem 3.1.
For any centrally symmetric dissection, we observe that there is either a diameter or an (sj + 2)-gon in

the center. Hence if U(s, n, k, d) is nonempty, then either d = 2 and k is odd, or d ≥ 2 and d divides k.
These two cases are treated in Propositions 3.3 and 3.4, respectively.

Proposition 3.3. For positive integers s and n, with sn even and k odd, we have

|U(s, n, k, 2)| =











( sn+k+1
2

k+1
2

)(n−2
2

k−1
2

)

if n even,

0 otherwise.

For the latter case, the result relies on a bijection (Proposition 3.4), which is inspired by a work of
Tzanaki [11]. In fact, for the special case d = 2 and n even, the result has been obtained by Tzanaki in [11,
Corollary 3.2] by a bijection similar to the one given by Przytycki and Sikora in [7, Theorem 1]. We extend
this method to enumerate d-fold rotationally symmetric dissections for all d ≥ 2.

Proposition 3.4. For d ≥ 2 a common divisor of sn + 2 and k, there is a bijection between the set
U(s, n, k, d) and the cartesian product of the set of sequences {1 ≤ a1 ≤ a2 ≤ · · · ≤ a k

d
≤ sn+2

d
} and the set

of sequences (ε1, . . . , εm) ∈ {0, 1}m with exactly k
d

entries equal to 1, where m = bn−1
d

c.
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Corollary 3.5. For d ≥ 2 a common divisor of sn + 2 and k, we have

|U(s, n, k, d)| =

( sn+2+k
d

− 1
k
d

)(

bn−1
d

c
k
d

)

.

Since the results of Proposition 3.3 and Corollary 3.5 agree with that of Proposition 3.2, the proof of
Theorem 3.1 is completed.

4. The cyclic sieving phenomenon for ∆s(Bn)

Following [3, Section 5.2], the generalized cluster complex ∆s(Φ) for type Bn can be realized as follows
(see also [10, 11]). Let P be a regular polygon with 2sn+2 vertices. The vertices are labeled by {1, 2, . . . , sn+
1, 1, 2, . . . , sn + 1} counterclockwise. A B-diagonal of P is either (i) a diameter, i.e., a diagonal that connects
a pair of antipodal points i, i, for some 1 ≤ i ≤ sn + 1, or (ii) a pair of s-divisible diagonals ij, ij for two
distinct i, j ∈ {1, 2, . . . , sn + 1, 1, 2, . . . , sn + 1}, nonconsecutive around the boundary of the polygon. (It
is understood that if a = i, then a = i). Note that a B-diagonal dissects P into a pair of (sm + 2)-gons
and a centrally symmetric (2s(n − m) + 2)-gon (1 ≤ m ≤ n). The vertices of ∆s(Bn) correspond to the
B-diagonals of P , and the faces of ∆s(Bn) correspond to s-divisible dissections of P using B-diagonals. The
maximal faces correspond to centrally symmetric dissections of P into (s + 2)-gons. For s = 1, this complex
is the dual complex of the n-dimensional cyclohedron, or Bott-Taubes polytop (see [2, Lecture 3]). Under
this bijection, the map Γs corresponds to clockwise rotation of P carrying point 2 to point 1, etc. Taking
Gaussian coefficients with base q2 in Theorem 2.1(ii), we define

(8) H(s, n, k; q) =

[

sn + k

k

]

q2

[

n

k

]

q2

,

for 0 ≤ k ≤ n. Note that H(s, n, k; 1) = fk(Bn, s). We prove that the faces of ∆s(Bn) exhibit the cyclic
sieving phenomenon under the group action 〈Γs〉.

Theorem 4.1. For positive integers s and n, let X be the set of s-divisible dissections of a (2sn+2)-gon
using k noncrossing B-diagonals. Let the cyclic group C of order 2sn + 2 act on X by cyclic rotation of the
polygon. Let X(q) := H(s, n, k; q). Then (X, X(q), C) exhibits the cyclic sieving phenomenon.

5. The cyclic sieving phenomenon for ∆s(Dn)

Following [3, Section 5.3], the generalized cluster complex ∆s(Φ) for type Dn can be realized as follows.
Let P be a regular polygon with 2s(n − 1) + 2 vertices. The vertices are labeled by {1, 2, . . . , s(n − 1) +

1, 1, 2, . . . , s(n − 1) + 1} counterclockwise. There are two copies of each diameter, one colored red and the
other colored blue. A D-diagonal of P is either (i) a red or a blue diameter, or (ii) a non-diameter B-
diagonal. For 1 ≤ i ≤ s(n− 1) + 1, let Li denote the diameter connecting i, i, and let κ(Li) denote the color
of Li. The map Γs acts on ∆s(Dn) by rotating P clockwise, carrying point 2 to point 1, and switching the
colors of certain diameters. Specifically, Γs carries the ordered pair (Lj , κ(Lj)) to (Lj−1, κ(Lj−1)), where
κ(Lj−1) 6= κ(Lj) if j = 1 or j ≡ 2 (mod s), and κ(Lj−1) = κ(Lj) otherwise. A relation of compatibility
among D-diagonals is defined as follows. Two diameters with the same endpoints and different colors are
compatible. Two diameters with distinct endpoints are compatible if and only if applying Γs repeatedly until
either of them is carried to L1 results in diameters of the same color. In all the other cases, two D-diagonals
are compatible if they are noncrossing in the sense of type-B dissections. The faces of ∆s(Dn) correspond
to dissections of P using compatible D-diagonals. For convenience, the set {(sj + 2, sj + 1) : 0 ≤ j ≤ n− 1}
of edges of P are called color-switchers, where s(n − 1) + 2 = 1. Figure 6 shows the orbit of a maximal face
of ∆2(D3) under the action of Γ2, along with the color-switchers and their opposite edges, drawn as broken
edges, indicating the locations at which diameters change colors.

We define the polynomial F (s, n, k; q) by

(9)

F (s, n, k; q) :=

[

s(n − 1) + k

k

]

q2

[

n − 1

k

]

q2

+

[

s(n − 1) + k

k

]

q2

[

n − 2

k − 1

]

q2

· qn

+

[

s(n − 1) + k

k

]

q2

[

n − 2

k − 2

]

q2

+

[

s(n − 1) + k − 1

k

]

q2

[

n − 2

k − 2

]

q2

· qn.



8 Sen-Peng Eu and Tung-Shan Fu
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3

4

52
1

3

4

Figure 6. The orbit of a maximal face of ∆2(D3).

Note that F (s, n, k; 1) = fk(Dn, s). We shall prove that the k-faces of ∆s(Dn), along with F (s, n, k; q),
exhibit the cyclic sieving phenomenon.

Theorem 5.1. For positive integers s and n, let X be the set of s-divisible dissections of a (2s(n−1)+2)-
gon using k compatible D-diagonals. Let C be the cyclic group of order 2s(n − 1) + 2 generated by Γs that
acts on X. Let X(q) := F (s, n, k; q). Then (X, X(q), C) exhibits the cyclic sieving phenomenon.

6. The cyclic sieving phenomenon for ∆s(I2(a))

For a root system Φ of type I2(a), the complex ∆s(I2(a)) is an (s + 1)-regular graph on sa + 2 vertices,
whose edges are facets. As shown in [3, Example 4.4], this graph can be constructed in the plane on a circle
of sa + 2 points labeled from 0 to sa + 1 clockwise. For a odd, the edge set has (am + 2)-fold rotational

symmetry and connects each vertex v to the s + 1 vertices v + s(a−1)
2 + j (mod sa + 2), for j = 1, . . . , s + 1.

Figure 7(a) shows this graph for s = 2 and a = 5. In this case, the map Γs corresponds to a counterclockwise
rotation of the graph by 2π

sa+2 . For a even, fixing an odd integer i, the edge set has ( sa+2
2 )-fold rotational

symmetry and connects 0 to the vertices i, i+2, . . . , i+2s. Figure 7(b) is ∆2(I2(4)) drawn in this style with
i = 1. In this case, the map Γs acts by a counterclockwise rotation of the graph by 4π

sa+2 . Along with the

q-analogue X(q) of Theorem 2.1(iv), we prove the cyclic sieving phenomenon for the facets of ∆s(Φ).

(a) (b)

1

3

45

9

6

7

8

2

00
1

2

3

4

5

8

10

11

6
7

9

Figure 7. Representation of ∆2(I2(5)) and ∆2(I2(4)).

Theorem 6.1. Let X be the edge set of the graph ∆s(I2(a)). Define

X(q) :=
[sa + 2]q

[2]q
·
[sa + a]q

[a]q
.

Let C = Zsa+2 be the cyclic group that acts on X by cyclic rotation of the graph. Then (X, X(q), C) exhibits
the cyclic sieving phenomenon.
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7. The cases of exceptional types

In this section, we consider the cluster complex ∆(Φ) of exceptional type E6, E7, E8, F4, H3, and H4.
When k = n, the polynomial X(q) = Cat(Φ, q) defined in (4) is a feasible q-analogue of the number of

facets of ∆(Φ). We verify Theorem 1.2 affirmatively for ∆(Φ) of exceptional type. To see this, with the
Coxeter numbers and exponents of Φ listed in Figure ??, the polynomials X(q) are expanded as follows.

(i) In type E6, X(q) ≡ 67 + 52q + 67q2 + 52q3 + · · · + 67q12 + 52q13 (mod q14 − 1).
(ii) In type E7, X(q) ≡ 416 + 416q2 + 416q4 + · · · + 416q18 (mod q20 − 1).
(iii) In type E8, X(q) ≡ 1574+1562q2 +1572q4 +1562q6 + · · ·+1574q24 +1562q26 +1572q28 +1562q30

(mod q32 − 1).
(iv) In type F4, X(q) ≡ 15 + 15q2 + 15q4 + · · · + 15q12 (mod q14 − 1).
(v) In type H3, X(q) ≡ 6 + 5q2 + 5q4 + 6q6 + 5q8 + 5q10 (mod q12 − 1).
(vi) In type H4, X(q) ≡ 18 + 17q2 + 18q4 + 17q6 + · · · + 18q28 + 17q30 (mod q32 − 1).

As searched by a computer, the orbit-structures for the k-faces of ∆(Φ) under the cyclic group C

generated by Γ are shown in Figure 8. We write a1(b1), a2(b2), . . . , at(bt) for the orbit-structure of the
k-faces that are partitioned into bi orbits of size ai, for 1 ≤ i ≤ t, in which case the number of k-faces is
equal to a1b1 + · · · + atbt.

k E6 E7 E8 F4 H3 H4

1 14(2), 7(2) 10(7) 16(8) 7(4) 6(3) 16(4)
2 14(26), 7(5) 10(94), 5(1) 16(149), 8(3) 7(19) 6(8) 16(21), 8(1)
3 14(104), 7(13) 10(518) 16(1121) 7(30) 6(5), 2(1) 16(35)
4 14(195), 7(18) 10(1410), 5(1) 16(4211), 8(13), 4(2) 7(15) 16(17), 8(1)
5 14(171), 7(15) 10(2020), 2(1) 16(8778)
6 14(52), 7(15) 10(1456) 16(10230), 8(22)
7 10(416) 16(6270)
8 16(1562), 8(10), 4(2)

Figure 8. The orbit-structures of the k-faces of ∆(Φ) of exceptional types.

We observe that the orbit-structures for the facets of ∆(Φ) shown in Figure 8 agree with the expansions
(i)-(vi) of X(q) (mod qh+2 − 1). Hence the cyclic sieving phenomenon holds. Consequently, together with
the special case s = 1 and k = n in Theorems 3.1, 4.1, 5.1, and 6.1, Theorem 1.2 is proved.
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