A talk for the 19th Annual Internat. Confer. on Formal Power Series and Algebraic Combin.

An additive theorem related to Latin transversals

Zhi-Wei Sun
Department of Mathematics, Nanjing University
Nanjing 210093, People's Republic of China
zwsun@nju.edu.cn
http://math.nju.edu.cn/~zwsun

Abstract

Let G be any additive abelian group with cyclic torsion subgroup, and let A, B and C be finite subsets of G with cardinality $n>0$. We show that there is a numbering $\left\{a_{i}\right\}_{i=1}^{n}$ of the elements of A, a numbering $\left\{b_{i}\right\}_{i=1}^{n}$ of the elements of B and a numbering $\left\{c_{i}\right\}_{i=1}^{n}$ of the elements of C, such that all the sums $a_{i}+b_{i}+c_{i}(1 \leqslant i \leqslant n)$ are distinct. Consequently, each subcube of the Latin cube formed by the Cayley addition table of $\mathbb{Z} / N \mathbb{Z}$ contains a Latin transversal. This additive theorem is an essential result which can be further extended via restricted sumsets in a field. The whole paper is available from arXiv:math.CO/0610981 or the author's homepage.

In 1999 Snevily [Sn99] raised the following original conjecture in additive combinatorics.
Snevily's Conjecture. Let G be an additive abelian group with $|G|$ odd. Let A and B be subsets of G with cardinality $n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$. Then there is a numbering $\left\{a_{i}\right\}_{i=1}^{n}$ of the elements of A and a numbering $\left\{b_{i}\right\}_{i=1}^{n}$ of the elements of B such that the sums $a_{1}+b_{1}, \ldots, a_{n}+b_{n}$ are distinct.

In our opinion, Snevily's conjecture belongs to the central part of combinatorial number theory due to its simplicity and beauty.

When $|G|$ is an odd prime, this conjecture was proved by Alon [A00] via the polynomial method (cf. Alon [A99], and Tao and Vu [TV06, pp. 329-345]). In 2001 Dasgupta, Károlyi, Serra and Szegedy [DKSS] confirmed Snevily's conjecture for any cyclic group of odd order. In 2003 Sun [Su03] obtained some further extensions of the Dasgupta-Károlyi-Serra-Szegedy result via restricted sums in a field.

In Snevily's conjecture the abelian group is required to have odd order. For a general abelian group G with cyclic torsion subgroup, what additive properties can we impose on several subsets of G with cardinality n ? In this direction we establish the following new theorem of additive nature.

Theorem 1.1. Let G be any additive abelian group with cyclic torsion subgroup, and let A_{1}, \ldots, A_{m} be arbitrary subsets of G with cardinality $n \in \mathbb{Z}^{+}$, where m is odd. Then the elements of $A_{i}(1 \leqslant i \leqslant m)$ can be listed in a suitable order $a_{i 1}, \ldots, a_{i n}$, so that all the sums $\sum_{i=1}^{m} a_{i j}(1 \leqslant j \leqslant n)$ are distinct. In other words, for a certain subset A_{m+1} of G
with $\left|A_{m+1}\right|=n$, there is a matrix $\left(a_{i j}\right)_{1 \leqslant i \leqslant m+1,1 \leqslant j \leqslant n}$ such that $\left\{a_{i 1}, \ldots, a_{i n}\right\}=A_{i}$ for all $i=1, \ldots, m+1$ and the column sum $\sum_{i=1}^{m+1} a_{i j}$ vanishes for every $j=1, \ldots, n$.
Remark 1.1. Theorem 1.1 in the case $m=3$ is essential; the result for $m=5,7, \ldots$ can be obtained by repeated use of the case $m=3$. The group G in Theorem 1.1 cannot be replaced by an arbitrary abelian group, there are counter-examples even for the Klein quaternion group $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.

Recall that a line of an $n \times n$ matrix is a row or column of the matrix. We define a line of an $n \times n \times n$ cube in a similar way. A Latin cube over a set S of cardinality n is an $n \times n \times n$ cube whose entries come from the set S and no line of which contains a repeated element. A transversal of an $n \times n \times n$ cube is a collection of n cells no two of which lie in the same line. A Latin transversal of a cube is a transversal whose cells contain no repeated element.

Corollary 1.1. Let N be any positive integer. For the $N \times N \times N$ Latin cube over $\mathbb{Z} / N \mathbb{Z}$ formed by the Cayley addition table, each $n \times n \times n$ subcube with $n \leqslant N$ contains a Latin transversal.

In 1967 H. J. Ryser [R] conjectured that every Latin square of odd order has a Latin transversal. Another conjecture of Brualdi (cf. [D], [DK, p. 103] and [EHNS]) states that every Latin square of order n has a partial Latin transversal of size $n-1$. These and Corollary 1.1 suggest that our following conjecture might be reasonable.

Conjecture 1.1. Every $n \times n \times n$ Latin cube contains a Latin transversal.
Note that Conjecture 1.1 does not imply Theorem 1.1 since an $n \times n \times n$ subcube of a Latin cube might have more than n distinct entries.

In Theorem 1.1 the condition $2 \nmid m$ is indispensable. Let G be an additive cyclic group of even order n. Then G has a unique element g of order 2 and hence $a \neq-a$ for all $a \in G \backslash\{0, g\}$. Thus $\sum_{a \in G} a=0+g=g$. For each $i=1, \ldots, m$ let $a_{i 1}, \ldots, a_{i n}$ be a list of the n elements of G. If those $\sum_{i=1}^{m} a_{i j}$ with $1 \leqslant j \leqslant n$ are distinct, then

$$
\sum_{a \in G} a=\sum_{j=1}^{n} \sum_{i=1}^{m} a_{i j}=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}=m \sum_{a \in G} a
$$

hence $(m-1) g=(m-1) \sum_{a \in G} a=0$ and therefore m is odd.
Combining Theorem 1.1 with [Su03, Theorem 1.1(ii)], we obtain the following consequence.

Corollary 1.2. Let G be any additive abelian group with cyclic torsion subgroup, and let A_{1}, \ldots, A_{m} be subsets of G with cardinality $n \in \mathbb{Z}^{+}$, where m is even. Suppose that all the elements of A_{m} have odd order. Then the elements of $A_{i}(1 \leqslant i \leqslant m)$ can be listed in a suitable order $a_{i 1}, \ldots, a_{i n}$, so that all the sums $\sum_{i=1}^{m} a_{i j}(1 \leqslant j \leqslant n)$ are distinct.

As an essential result, Theorem 1.1 might have various potential applications in additive number theory and combinatorial designs. We can also extend Theorem 1.1 via restricted sumsets in a field.

We can prove Theorem 1.1 in two ways. A direct proof involves the following lemma.
Lemma 1.1. Let R be a commutative ring with identity, and let $a_{i j} \in R$ for $i=1, \ldots, m$ and $j=1, \ldots, n$, where $m \in\{3,5, \ldots\}$. The we have the identity

$$
\begin{gathered}
\sum_{\sigma_{1}, \ldots, \sigma_{m-1} \in S_{n}} \operatorname{sign}\left(\sigma_{1} \cdots \sigma_{m-1}\right) \prod_{1 \leqslant i<j \leqslant n}\left(a_{m j} \prod_{s=1}^{m-1} a_{s \sigma_{s}(j)}-a_{m i} \prod_{s=1}^{m-1} a_{s \sigma_{s}(i)}\right) \\
=\prod_{1 \leqslant i<j \leqslant n}\left(a_{1 j}-a_{1 i}\right) \cdots\left(a_{m j}-a_{m i}\right),
\end{gathered}
$$

where S_{n} denotes the symmetric group of all permutation on $\{1, \ldots, n\}$, and $\operatorname{sign}(\sigma)$ takes 1 or -1 according as $\sigma \in S_{n}$ is even or odd.

Another proof of Theorem 1.1 makes use of the following powerful tool.
Combinatorial Nullstellensatz [A99]. Let A_{1}, \ldots, A_{n} be finite subsets of a field F with $\left|A_{i}\right|>k_{i} \geqslant 0$ for $i=1, \ldots, n$. If the total degree of $f\left(x_{1}, \ldots, x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]$ is $k_{1}+\cdots+k_{n}$ and the coefficient of the monomial $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ in $f\left(x_{1}, \ldots, x_{n}\right)$ is nonzero, then $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$ for some $a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}$.

References

[A99] N. Alon, Combinatorial Nullstellensatz, Combin. Prob. Comput. 8(1999), 7-29.
[A00] N. Alon, Additive Latin transversals, Israel J. Math. 117(2000), 125-130.
[D] A. A. Drisko, Transversals in row-Latin rectangles, J. Combin. Theory Ser. A 84(1998), 181-195.
[DKSS] S. Dasgupta, G. Károlyi, O. Serra and B. Szegedy, Transversals of additive Latin squares, Israel J. Math. 126(2001), 17-28.
[DK] J. Dénes and A. D. Keedwell, Latin Squares and their Applications, Academic Press, New York, 1974.
[EHNS] P. Erdős, D. R. Hickerson, D. A. Norton and S. K. Stein, Has every latin square of order n a partial latin transversal of size $n-1$? Amer. Math. Monthly $95(1988)$, 428-430.
[R] H. J. Ryser, Neuere Probleme der Kombinatorik, in: "Vorträge über Kombinatorik", Oberwolfach, 1967; Mathematiches Forschungsinstitut, Oberwolfach, 1968, pp. 6991.
[Sn99] H. S. Snevily, The Cayley addition table of \mathbb{Z}_{n}, Amer. Math. Monthly 106(1999), 584-585.
[Su03] Z. W. Sun, On Snevily's conjecture and restricted sumsets, J. Combin. Theory Ser. A 103(2003), 291-304.
[TV06] T. Tao and V. H. Vu, Additive Combinatorics, Cambridge Univ. Press, Cambridge, 2006.

