
Formal Power Series and Algebraic Combinatorics

Nankai University, Tianjin, China, 2007

Dual graded graphs for Kac-Moody algebras

Extended Abstract
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Abstract. Motivated by affine Schubert calculus, we construct a family of dual graded graphs (Γs, Γw)
for an arbitrary Kac-Moody algebra g. The graded graphs have the Weyl group W of g as vertex set and
are labeled versions of the strong and weak orders of W respectively. Using a construction of Lusztig for
quivers with an admissible automorphism, we define folded insertion for a Kac-Moody algebra and obtain
Sagan-Worley shifted insertion from Robinson-Schensted insertion as a special case. Drawing on work of
Proctor and Stembridge, we analyze the induced subgraphs of (Γs, Γw) which are distributive posets.

1. Introduction

The Robinson-Schensted algorithm is possibly the most important algorithm in algebraic combinatorics.
It exhibits a bijection between permutations and pairs of standard Young tableaux of the same shape.
Stanley investigated the class of differential posets [19] (also studied in [2]) and Fomin studied the more
general notion of a dual graded graph [3] to formalize local conditions which would be sufficient, in more
general situations, to imply the existence of a Robinson-Schensted style algorithm, sometimes just called an
insertion algorithm.

In this article, we construct a family of dual graded graphs (Γs, Γw) associated to each Kac-Moody
algebra g. These graded graphs have as vertex set the Weyl group W of g. The pair (Γs, Γw) depends
on additional parameters, but in every case Γs and Γw are respectively obtained as edge-labelings of the
Hasse diagrams of the strong (Bruhat) order and weak order on W . These labelings were strongly motivated
by the geometry of Kac-Moody flag manifolds G/P where G is a Kac-Moody group and P is a parabolic
subgroup. In general the edge labels of the strong graph Γs are nonnegative integer linear combinations of
certain Schubert structure constants for H∗(G/B) known as Chevalley coefficients.

In the case of the affine Grassmannian Gr (which takes the form G/P where G is an affine Kac-Moody
group and P is a certain maximal parabolic), the dual graded graph structure arises from the pair of dual
graded Hopf algebras given by H∗(Gr) and H∗(Gr). The down operator is defined by the action of the
Schubert homology class ξs0

indexed by the zero-th simple reflection s0 in the affine Weyl group, on the
Schubert basis of H∗(Gr). The up operator is defined by multiplication by the cohomology Schubert class
ξsi for a fixed simple reflection si ∈ W . It is a general phenomenon that pairs of dual graded combinatorial
Hopf algebras yield dual graded graphs; we shall pursue this in a separate publication [12].

For each pair of Kac-Moody dual graded graphs (Γs, Γw) we define standard weak and strong tableaux.
Via Fomin’s theory we obtain an enumerative identity that gives the number of colored permutations as a

sum over pairs of tableaux of the same shape, one strong and one weak. For g of affine type A
(1)
n−1 we recover

the dual graded graphs that were implicitly studied in our joint work with Lapointe and Morse [10]. The
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weak and strong tableaux in [10] are nontrivial semistandard generalizations of the corresponding objects
here. In [10], an affine insertion algorithm was explicitly constructed for semistandard weak and strong
tableaux, and a number of applications were given to the geometry of the affine Grassmannian Gr and to the

theory of symmetric functions. In the limit n → ∞ of the A
(1)
n−1 case, our construction reproduces Young’s

lattice, which is the self-dual graded graph that gives rise to the Robinson-Schensted algorithm.
Using a construction of Lusztig for quivers with an admissible automorphism, given any symmetrizable

Kac-Moody algebra g(A), there is a symmetric Kac-Moody algebra g(B) and an embedding g(A) → g(B).
Our combinatorics is compatible with these embeddings: any pair of our dual graded graphs (ΓA

s , ΓA
w) for

g(A), can be realized using a similar pair (ΓA
s , ΓB

w) for g(B). We define folded insertion, which realizes a
Schensted bijection for (ΓA

s , ΓA
w), in terms of a Schensted algorithm for the related pair (ΓB

s , ΓB
w). Taking A

and B to be of affine types C
(1)
n and A

(1)
2n−1 respectively, in the n → ∞ limit we obtain Sagan-Worley shifted

insertion [17, 24] from Robinson-Schensted insertion as a special case of folded insertion.
Our second aim is to investigate induced subgraphs of the graphs (Γs, Γw) which are distributive lattices,

when considered as posets. These are precisely the conditions under which one may describe our strong and
weak tableaux by “filling cells with numbers” as in a usual standard Young tableau. Here we draw on work
of Proctor [15] and Stembridge [21] classifying the parabolic quotients of Coxeter groups which have weak or
strong orders that are distributive lattices. We sharpen these results slightly to show that in these cases, the
distributivity is compatible (see Section 3.2) with the edge-labeling of our graphs (Γs, Γw). These distributive
parabolic quotients have also appeared recently in the geometric work of Thomas and Yong [23], who show
that the jeu-de-taquin can be used to calculate structure constants of the cohomology of (co)minuscule flag
varieties. We do not recover this result, but observe that their notion of standard tableau fits nicely into our
general framework: they are given by either our strong or weak tableaux with edge labels forgotten.

Among the topics that are omitted here but are present in the full article [11], are: Lusztig’s embedding
and folded insertion, a new family of Schensted algorithms coming from affine type C that includes Sagan-
Worley insertion, analogues of the mixed and left-right insertion of Haiman [6], a simplified description of
the standard case of the affine Robinson-Schensted-Knuth correspondence of [10] in terms of cores, and a
new Chevalley formula for the homology of all affine Grassmannians.

2. Dual graded graphs for Kac-Moody algebras

2.1. Fomin’s dual graded graphs. We recall Fomin’s notion of dual graded graphs [3]. A graded
graph is a directed graph Γ = (V, E, h, m) with vertex set V and set of directed edges E ⊂ V 2, together with
a grading function h : V → Z≥0, such that every directed edge (v, w) ∈ E satisfies h(w) = h(v) + 1 and has
a label m(v, w) ∈ Z≥0. Sometimes we will use poset-theoretic language when discussing a graded graph Γ
by treating Γ as the Hasse diagram (graph of cover relations) of a poset PΓ.

Γ is locally-finite if, for every v ∈ V , there are finitely many w ∈ V such that (v, w) ∈ E and finitely
many u ∈ V such that (u, v) ∈ E; we shall assume this condition without further mention. For a graded
graph Γ = (V, E, h, m) define the Z-linear operators D, U : ZV → ZV on the free abelian group ZV of formal
Z-linear combinations of vertices, by

UΓ(v) =
∑

(v,w)∈E

m(v, w)w DΓ(w) =
∑

(v,w)∈E

m(v, w)v

A pair of graded graphs (Γ, Γ′) is dual if they have the same vertex sets and grading function (but
possibly different edge sets and edge labels) such that

DΓ′UΓ − UΓDΓ′ = rI(2.1)

for some fixed r ∈ Z>0. We call r the differential coefficient. When Γ = Γ′ and all the edges have multiplicity
one, we obtain the r-differential posets of [19]. The prototypical example of dual graded graphs is (Γ, Γ)
where Γ is Young’s lattice of partitions, with edges (µ, λ) if the Ferrers diagram of λ is obtained by adding
a cell to that of µ, and every edge label is 1.

Our first aim is to exhibit a new family of dual graded graphs, which depend on a Kac-Moody algebra
g, an element K which lies in the center of g, and a weight Λ ∈ h∗ where h ⊂ g is the Cartan subalgebra.
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2.2. The labeled Kac-Moody weak and strong orders. Let g = g(A) denote the Kac-Moody
algebra over C associated to the generalized Cartan matrix A = (aij)i,j∈I where I is the Dynkin node set
and aij = 〈αj , α∨

i 〉 [8], where 〈· , ·〉 : h∗× h → C is the natural pairing between the Cartan subalgebra h ⊂ g

and its dual h∗. Let αi ∈ h∗, α∨
i ∈ h, and Λi ∈ h∗ be the simple roots, simple coroots, and fundamental

weights, for i ∈ I. We assume that the simple roots are linearly independent and the dimension of h is
chosen to be minimal. Let W be the Weyl group of g with generators si for i ∈ I, and let ∆+

re be the set
of positive real roots, with reflection sγ ∈ W and coroot γ∨ for γ ∈ ∆+

re. The (left) weak order ≺ of W is
generated by the cover relations w ≺ sjw whenever ℓ(w) < ℓ(sjw) and j ∈ I, w ∈ W . The strong order (or
Bruhat order) < of W is generated by the cover relations w ⋖ wsγ whenever ℓ(wsγ) = ℓ(w)+1 and γ ∈ ∆+

re,
w ∈ W . For any v ∈ W define its left descent set by Des(v) = {j ∈ I | sjv < v}.

Given Λ in the set P+ of dominant integral weights, let Γs(Λ) be the graded graph whose vertex set is
W and whose edges are given by (v, w) ∈ W 2 where v ⋖ w. Letting γ ∈ ∆+

re be such that w = vsγ , the edge
(v, w) is labeled by mΛ(v, w) = 〈Λ , γ∨〉.

Let Z+ denote the set of elements K ∈ h that lie in the center of g, which have the form K =
∑

j∈I kjα
∨
j

for kj ∈ Z≥0. The condition that K is central implies that the vector (kj)j∈I defines a linear dependence
amongst the rows of A.

Given K ∈ Z+, let Γw(K) be the graded graph whose vertex set is W , and whose edges are given by
weak covering relations (v, w) ∈ W 2 with v ≺ w = sjv for some j ∈ I. The edge (v, w) is labeled by
nK(v, w) = kj = 〈Λj , K〉.

Theorem 2.1. Let (Λ, K) ∈ P+ × Z+. Then (Γs(Λ), Γw(K)) is a pair of dual graded graphs with
differential coefficient r = 〈Λ , K〉.

Proof. Let U = UΓs(Λ) and D = DΓw(K). First consider the coefficient of u 6= v in (DU − UD)v. It is
given by

∑

(j,γ)∈I×∆+
re

v⋖vsγ

u=sjvsγ<vsγ

kj〈Λ , γ∨〉 −
∑

(j,γ)∈I×∆+
re

sjv<v
sjv⋖sjvsγ=u

kj〈Λ , γ∨〉.

Using two versions of [7, Lemma 5.11] we see that the two indexing sets for the sums are equal. Thus the
coefficient of u 6= v in (DU − UD)v is zero.

Now let us calculate the coefficient of v in (DU − UD)v. Since sjv is either covered by v or covers v in
the left weak Bruhat order, the coefficient of v in (DU − UD)v is

∑

j∈I\Des(v)

kj〈Λ , v−1α∨
j 〉 −

∑

j∈Des(v)

kj〈Λ , (sjv)−1α∨
j 〉

=
∑

j∈I

kj〈Λ , v−1α∨
j 〉 =

∑

j∈I

kj〈vΛ , α∨
j 〉

= 〈vΛ , K〉 = 〈Λ , v−1(K)〉 = 〈Λ , K〉.

We have used the W -invariance of 〈· , ·〉 and K, plus the fact that if v < sjv then sjv = vsγ where
γ = v−1αj ∈ ∆+

re. �

Remark 2.2. If Λ = Λj the graph Γs(Λj) is a labeling of the strong Bruhat order on W by certain
Chevalley coefficients. Namely, the edge (v, vsα = w) is labeled with the coefficient of ξw in ξsj ξv, where
ξw ∈ H∗(G/B) is the Schubert cohomology class for the affine flag manifold G/B, with G the Kac-Moody
group with associated Lie algebra g and B a Borel subgroup [9].

2.3. Paths and tableaux. Suppose Γ is a graded graph and v, w ∈ Γ are two vertices. A tableau T of
shape v/w is a directed path

T = (v = v0
m1−→ v1

m2−→ · · ·
mk−→ vk = w)

such that each directed edge vi−1 → vi has been marked with an integer 1 ≤ mi ≤ m(vi−1, vi). Alternatively,
one thinks of mi as indicating which of the m(vi−1, vi) edges from vi−1 to vi the path transverses. In the
case that Γ is Young’s lattice, these tableaux are the usual standard Young tableaux.
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If Γ has a unique minimum element 0̂, we say T has shape v if it has shape v/0̂. This is the case for
our graphs Γs(Λ) and Γw(K). We call the tableaux in Γs(Λ) and Γw(K) (standard) Λ-strong tableaux and
(standard) K-weak tableaux respectively.

Given a pair of dual graded graphs (Γ, Γ′) one may deduce a number of combinatorial identities [3]
concerning the number of tableaux. In the case that Γ = Γ′ is Young’s lattice, one obtains the well-known
identity n! =

∑
λ f2

λ where λ ranges over the partitions of n and fλ is the number of standard Young tableaux
of shape λ. So Λ-strong and K-weak tableaux are both analogues of standard Young tableaux.

Applying Fomin’s general theory [3] we obtain the following result.

Corollary 2.3. Suppose g is a Kac-Moody algebra and (Λ, K) ∈ P+ ×Z+. Then for each n ∈ Z≥0 we
have

(2.2)
∑

w∈W
ℓ(w)=n

fw
strongf

w
weak = rn n!

where r = 〈Λ , K〉, fw
strong is the number of Λ-strong tableaux of shape w and fw

weak is the number of K-weak
tableaux of shape w.

2.4. From commutation relations to combinatorial algorithms. Dual graded graphs are closely
related to insertion algorithms. If a local bijection is chosen which exhibits the equation (2.1) at each vertex
v, then there is an induced bijection which proves the combinatorial identity (2.2) [4]. Two particular
choices of local bijections for (Γ, Γ) give the row and column insertion Robinson-Schensted bijections when
Γ is Young’s lattice [18].

In the case of the dual graded graphs (Γs(Λ), Γw(K)) there is a natural bijection which proves that
w 6= v does not occur in (DU − UD)v, for v, w ∈ W . This natural bijection is essentially obtained from [7,

Lemma 5.11], just as in the proof of Theorem 2.1. The marked (down-up) path v
m
−→ sjv

n
−→ sjvsα = w

is bijected to the (up-down) path v
n

−→ vsα
m
−→ sjvsα = w. Here 1 ≤ m ≤ 〈Λj , K〉 and 1 ≤ n ≤ 〈Λ , α∨〉

indicates the markings on the edges.
Currently we are not aware of a natural bijection which exhibits the coefficient of v in (DU − UD)v as

〈Λ , K〉. We shall give a special case where such a bijection has been constructed explicitly.

2.5. The affine case. If the generalized Cartan matrix A is of finite type, then Z+ = 0 and all edge
labels in Γw(K) are zero. If A is of affine type, it is known that Z+ is the set of nonnegative integer multiples
of the canonical central element K = Kcan =

∑
j∈I a∨

j α∨
j . The vector (a∨

j )j∈I is the unique linear dependence

of the rows of A given by positive, relatively prime integers [8]. In this case, we lose little generality by only

considering Kcan, so we define Γw := Γw(Kcan). We also define Γ
(i)
s = Γs(Λi) for convenience.

Remark 2.4. If g is an untwisted affine algebra, the edge multiplicities of the weak graph Γw are related
to the multiplication in the homology H∗(Gr) of the affine Grassmannian Gr = GrG of the simple Lie group
G whose Lie algebra is the canonical simple Lie subalgebra of the affine algebra g. The multiplication in
H∗(Gr) comes from the identification H∗(GrG) ∼= H∗(ΩK) [5] [16] where ΩK is the topological group given
by continuous maps from the circle S1 into the maximal compact form K of G that send a basepoint of the
circle to 1 ∈ K. The group structure on ΩK induces a multiplication on H∗(ΩK); see [1] [14].

2.6. Affine type A and LLMS insertion. For this subsection we assume that g is the affine Lie

algebra of type A
(1)
n−1. In this case the combinatorics of the pair of dual graded graphs (Γ

(i)
s , Γw) was studied

carefully in [10] and was one of the main motivations of the current work. One may interpret the affine
insertion algorithm of [10] (which we shall call LLMS insertion) as furnishing an explicit bijection proving

the duality of (Γ
(i)
s , Γw). Furthermore the LLMS insertion involves nontrivial extensions of the notion of

tableaux to semistandard weak and strong tableaux, and proves Pieri rules in the homology H∗(Gr) and
cohomology H∗(Gr) of the affine Grassmannian of SL(n, C) [10].

For g = A
(1)
n−1 we have a∨

j = 1 for all j ∈ I, so the weak graph Γw is multiplicity free. By the symmetry

of the affine Dynkin diagram, we may assume that Λ = Λ0 and for brevity we write Γs for Γ
(0)
s . To describe

Γs explicitly, we recall that the affine symmetric group W = S̃n has the concrete description as the group of
bijections f : Z → Z satisfying (a) f(i + n) = f(i) for each i ∈ Z; and (b)

∑n
i=1 f(i) = 1 + 2 + · · · + n, with

function composition being group multiplication. The reflections tij in S̃n are indexed by a pair of integers



DUAL GRADED GRAPHS FOR KAC-MOODY ALGEBRAS
EXTENDED ABSTRACT 5

(i, j) satisfying i < j and i 6= j mod n. Suppose v ⋖ vtij = w is a cover in S̃n. Then the edge (v, w) in Γs

has multiplicity equal to #{k ∈ Z | v(i) ≤ k < v(j) and k = 0 mod n }.

Let S̃0
n ⊂ S̃n denote the set of minimal length representatives in the cosets of S̃n/Sn. These are the

affine Grassmannian elements. The restrictions of Γs and Γw to S̃0
n ⊂ W yield a pair (Γ0

s, Γ
0
w) of dual graded

graphs. We will now explain LLMS insertion for S̃0
n and standard strong and weak tableaux, in the language

of cores. An n-ribbon is a connected skew shape λ/µ containing no 2 × 2 square. An n-core is a partition λ
such that no n-ribbon can be removed to obtain another partition. We let Cn denote the set of n-cores.

Proposition 2.1 ([10, 13]). There exists a unique bijection c : S̃0
n → Cn such that if w = skv with

k ∈ I = {0, 1, . . . , n − 1} and v, w ∈ S̃0
n with ℓ(w) = ℓ(v) + 1, then c(w) is obtained from c(v) by adjoining

every addable corner cell (i, j) such that j − i = k mod n. Moreover, for v, w ∈ S̃0
n, we have v < w if and

only if c(v) ⊂ c(w), and if v ⋖ w then c(w)/c(v) is a disjoint union of translates of some ribbon R, and the
number of components of c(w)/c(v) is equal to the multiplicity m(v, w) in Γs.

We say that µ ∈ Cn covers λ ∈ Cn if c−1(µ)⋗ c−1(λ). Thus a standard strong tableau in Γs is a sequence
λ = λ0 ⊂ λ1 ⊂ · · · ⊂ λl = µ such that λi covers λi−1 and one of the components of λi/λi−1 has been marked.
In the case that v ⋖ sjv = w, the ribbon R of Proposition 2.1 is always a single box. In this case we say that
c(v) ⊂ c(w) is a weak cover.

As we remarked in Section 2.4, there is a natural bijection which shows that DU − UD is diagonal for
(Γs, Γw). To show that (DU − UD)v = v for v ∈ S̃0

n, the following map was used in [10]. We say a square
(i, j) has residue k if j − i = k mod n. Let λ = c(v) be the n-core corresponding to v. If λ ⊂ µ is a weak
cover then by Proposition 2.1, µ/λ consists of all the outer corners of λ which have a fixed residue. As µ
varies over all the weak covers of λ we obtain all the outer corners in this way. Thus choosing a weak cover
µ of λ and choosing a component of µ/λ is equivalent to choosing an outer corner (or addable corner) of λ.
Similarly, components of cores ν weak covered by λ correspond to inner corners (or removable corners) of λ.
These components are exactly the (two-step) paths involved in calculating the coefficient of v in (DU−UD)v.
The injection establishing (DU − UD)v = v is the one used in the row insertion Schensted algorithm. It
sends an inner corner of λ to the outer corner of λ in the next row. The unique outer corner on the first row
of λ is distinguished and not in the image of this injection.

3. Distributive parabolic quotients

3.1. Classification. Let W be a finite irreducible Weyl group with simple generators {si | i ∈ I}, set
of reflections T , and length function ℓ : W → Z. For J ⊂ I we let WJ denote the parabolic subgroup
generated by {si | i ∈ J} and W J denote the set of minimal length coset representatives of W/WJ . We have
the following characterization of W J :

W J = {w ∈ W | w < wsi for any i ∈ J}.

The weak and strong orders of W restrict to W J . Proctor [15] classified the cases when W J is a distributive
lattice under the weak order. Stembridge [21] showed that these are the same cases that W J is a distributive
lattice under the strong order. In all such cases, the weak and strong orders agree on W J and WJ is a maximal
parabolic subgroup of W , that is J = I \{i} for some i ∈ I. We call such W J distributive parabolic quotients.

Theorem 3.1 ([15]). The distributive parabolic quotients are:

(1) W ≃ An; J = I \ {i} for any i ∈ I.
(2) W ≃ Bn; WJ ≃ Bn−1 or WJ ≃ An−1.
(3) W ≃ Dn; WJ ≃ Dn−1 or WJ ≃ An−1.
(4) W ≃ G2; J = I \ {i} for any i ∈ I.

In [21], it is shown that these cases are also exactly the parabolic quotients W J of Weyl groups such
that every element w ∈ W J is fully commutative, that is, every two reduced decompositions of w can be
obtained from each other using just the relations of the form sisj = sjsi for i, j ∈ I.

3.2. Distributive labeled posets. We need a slightly more precise form of the results of Proctor and
Stembridge. If Q is a finite poset we let J(Q) denote the poset of (lower) order ideals of Q. The poset
J(Q) is a distributive lattice and the fundamental theorem of finite distributive posets [20] says that the
correspondence Q 7→ J(Q) is a bijection between finite posets and finite distributive lattices. Suppose P is a
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finite poset and ω : {x ⋖ y} → A is a labeling of the edges of the Hasse diagram of P with elements of some
set A. We call (P, ω) an edge-labeled poset. We say that (P, ω) is a distributively labeled lattice if

(1) P = J(Q) is a distributive lattice; and
(2) there is a vertex (element) labeling π : Q → A such that

ω(I \ {q} ⋖ I) = π(q)

for any I ∈ J(Q) and q maximal in I.

If W is a Weyl group, we may label the edges of the Hasse diagram of the weak order (W,≺) with simple
reflections: the cover w ≺ siw is labeled with si. We denote the resulting edge-labeled poset by Wweak.
Similarly define Wstrong to be the strong order where w ⋖ wt is labeled with t ∈ T . These labeled posets
restrict to give labeled posets W J

weak and W J
strong. Note that each cover relation in W J under either order is

itself a cover relation in W . Thus W J
weak and W J

strong are induced subgraphs of Wweak and Wstrong.

Theorem 3.2. Suppose W J is a distributive parabolic quotient. Then W J
weak and W J

strong are distribu-
tively labeled posets.

The statement concerning W J
weak is immediate from Stembridge’s work [21, Theorem 2.2]. We give a

self-contained proof of Theorem 3.2 which recovers Stembridge’s result that the weak and strong orders agree
on such W J .

3.3. Cominuscule parabolic quotients. Let Φ be an irreducible finite root system and W be its
Weyl group. We let ∆ = {αi | i ∈ I} denote a system of simple roots and Φ = Φ+ ∪ Φ− denote the
decomposition of the roots into the disjoint subsets of positive and negative roots. Let θ =

∑
i∈I aiαi denote

the highest root of Φ. We say that i ∈ I is cominuscule if ai = 1. Apart from the case Φ = G2, each
distributive parabolic quotient corresponds to some W J where J = I \ {i} for a cominuscule node i ∈ I.
This can be checked case-by-case using Theorem 3.1, or alternatively compared with the dual (minuscule)
statement [21, Theorem 6.1]. There are two cases of distributive parabolic quotients whose removed node i
is not cominuscule, namely, Bn/An−1 and Cn/Cn−1; these are precisely the minuscule-but-not-cominuscule
cases in [23]. However in these cases one may use the isomorphic quotients given by their duals Cn/An−1

and Bn/Bn−1, which are cominuscule.
For now we suppose that a cominuscule node i ∈ I has been fixed and let J = I \ {i}. If α and β are

two roots, we say α ≥ β if α − β is a sum of positive roots. Recall that θ is the unique maximal root under
this order. Let Φ(i) denote the poset of positive roots which lie above αi. Clearly θ ∈ Φ(i). The inversion
set of w ∈ W is defined by

Inv(w) = {α ∈ Φ+ | wα < 0}.

Lemma 3.3. Suppose α, β ∈ Φ(i). Write sαβ = β + kα where k = −〈α∨ , β〉 ∈ Z. Then k ∈ {0,−1,−2}
and

(1) If α and β are incomparable then sαβ = β.
(2) If α > β then sαβ is equal to one of the following: (i) β; (ii) −γ where γ ∈ Φ+ \ Φ(i); or (iii) −γ

where γ > α.

Proof. To obtain the bounds on k we observe that for all roots γ ∈ Φ, −θ ≤ γ ≤ θ, so that the
coefficient of αi in γ, lies between the corresponding coefficients in −θ and θ, which are −1 and 1 by the
assumption that i is cominuscule.

Suppose that α and β are incomparable. Then β − α is neither positive nor negative and hence not a
root. Since the roots in Φ occur in strings, we must have k = 0.

If α > β, the three cases correspond to k = 0, k = −1, and k = −2. �

For our results on distributive parabolic quotients, we require the following result, which is a slight
strengthening of [23, Prop. 2.1, Lemma 2.2]. We include a self-contained proof, part of which is the same
as the proof of [23, Prop. 2.1].

Proposition 3.1. The map w 7−→ Inv(w) defines an isomorphism of posets Inv|W J : (W J ,≤) →
J(Φ(i)). Moreover, if u ⋖ w for u, w ∈ W J , then writing w = usα for α ∈ Φ+, we have α ∈ Φ(i) and
Inv(w) = Inv(u) ∪ {α}.
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Proof. Let w ∈ W J . First we show that Inv(w) ⊂ Φ(i). Suppose that γ ∈ Inv(w) \ Φ(i). If γ = αk

where k 6= i this means wsk < w which contradicts the assumption that w ∈ W J . Otherwise γ = δ + ρ
where δ, ρ ∈ Φ+ \ Φ(i). Since wγ < 0 we have wδ < 0 or wρ < 0 so the same argument applies. Repeating
we obtain a contradiction.

Now we show that Inv(w) ∈ J(Φ(i)). Suppose α ∈ Inv(w) and β < α. Then γ = α − β ∈ Φ+\Φ(i) since
the coefficient of αi in γ is zero. Since Inv(w) ⊂ Φ(i), we have γ 6∈ Inv(w), that is, wα−wβ = wγ > 0. Since
wα < 0 this shows that wβ < 0 as desired. Thus Inv|W J is well-defined.

Next we show that Inv|W J sends covers to covers. Let u ⋖ w with u, w ∈ W J and α ∈ Φ+ such that
w = usα. Then 0 > wα = −uα so α ∈ Inv(w) \ Inv(u). For all β ∈ Inv(u), since Inv(u) ∈ J(Φ(i)), α > β
or α > β. Either way we have wβ = usαβ < 0, since by Lemma 3.3, sαβ is either equal to β or −γ for
γ ∈ Φ+\Inv(u). That is, Inv(u) ⊂ Inv(w). Since |Inv(w)| = |Inv(u)|+1 it follows that Inv(w) = Inv(u)∪{α},
so that Inv(u) ⊂ Inv(w) is a covering relation in J(Φ(i)).

Next we show that every covering relation in J(Φ(i)) is the image of a covering relation in W J , and in
particular, that Inv|W J is onto. An arbitrary covering relation in J(Φ(i)) is given by S \ {α} ⊂ S where
S ∈ J(Φ(i)) and α is maximal in S.

By induction there is a u ∈ W J such that Inv(u) = S \ {α}. Let w = usα. It suffices to show that

Inv(w) = S and w ∈ W J .

The second claim follows from the first since none of the αk for k 6= i lie in Inv(w). For the first claim, since
α ∈ Φ(i) \ Inv(u), we may argue as before to show that S = Inv(u) ∪ {α} ⊂ Inv(w).

For the opposite inclusion, suppose β ∈ Φ+ \ S. We must show that wβ > 0. Write sαβ = β + kα for
k ∈ Z. If k = 0 then we are done as before. If k > 0 then sαβ > α, so that sαβ ∈ Φ+ \ S since S is an order
ideal. But then sαβ /∈ Inv(u) so wβ > 0. So we may assume that k < 0.

Suppose first that β ∈ Φ(i). We may assume that α and β are comparable by Lemma 3.3. Since S is an
order ideal we have β > α. If k = −1 then sαβ = β − α ∈ Φ+ \ Φ(i) since the coefficient of αi is 1 in both
α and β. In particular sαβ 6∈ Inv(u) so wβ > 0. Otherwise k = −2. Then sαβ = β − 2α < 0. We have
0 < β−α < α and −sαβ = 2α−β = α− (β−α) < α. Since S is an order ideal it follows that −sαβ ∈ Inv(u)
and wβ = usαβ > 0 as desired.

Otherwise β ∈ Φ+ \Φ(i). Since i is cominuscule we have k ∈ {−1, 0, 1}. We assume k = −1 as the other
cases were already done. Then sαβ = β − α < 0 since its coefficient of αi is −1. Moreover α − β ∈ Φ(i).
Since α > α−β and S is an order ideal, it follows that α−β ∈ Inv(u). Therefore wβ = usαβ > 0 as desired.

We have shown that every cover in J(Φ(i)) is the image under Inv|W J of a cover in (W J ,≤).
The bijectivity of Inv|W J follows by induction and the explicit description of the image of a cover under

Inv|W J . �

Proof of Theorem 3.2. For the case W = G2, both labeled posets W J
weak and W J

strong are chains, so

the result follows immediately. Thus we may assume that W J is a cominuscule parabolic quotient.
For W J

strong the result follows from Proposition 3.1. We label the vertices of Φ(i) by reflections, defining

π : Φ(i) → T by π(α) = sα. Each cover w ⋖ wsα in W J
strong corresponds to adding α ∈ Φ(i) to Inv(w). Thus

the edge label of w ⋖ wsα agrees with the vertex label π(α) = sα.
For the weak order W J

weak let us consider two covers w ⋖ wsα = sβw and v ⋖ vsα = sβ′v which have the
same label sα in W J

strong. We claim that sβ = sβ′ = sk for some k ∈ I. The elements w and v differ by right

multiplication by some sγ ’s where γ ∈ Φ(i) is incomparable with α; this is accomplished by passing between
w or v to the element u ∈ W J such that Inv(u) = Inv(w) ∩ Inv(v). By Lemma 3.3 these sγ ’s commute with

sα, and so wα = vα. This gives us a map f : Φ(i) → Φ+ defined by f(α) = β = wα, which does not depend
on w ∈ W J as long as w ⋖ wsα.

To show that f(α) is simple for each α ∈ Φ(i), consider a reduced word wsα = sk1
sk2

· · · skl
. We

know that w(r) = skr
· · · skl

∈ W J and that Inv(w(r)) differs from Inv(w(r+1)) by some root in Φ(i) since
w(r+1) ⋖ w(r). For some value r = r∗, this root is α and by the well-definedness just proved f(α) = αkr∗

,

since w(r∗) = w(r∗+1)sα. This shows that the strong order and weak order on W J coincide, and that W J
weak

is isomorphic to the poset of order ideals of Φ(i) where Φ(i) is labeled with π(α) = f(α). �
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Root system Dynkin Diagram

An

◦ ◦ ◦ ◦ ◦ ◦•

1 2 · · · i · · · n

Cn, n ≥ 3

◦ ◦ ◦ ◦ ◦ ◦< •

1 2 · · · · · · n

Dn, n ≥ 4 ◦ ◦ ◦ ◦ ◦HH
��

◦

◦
1 2 · · · · · · n−1

n◦

•

E6
◦ ◦ ◦ ◦ ◦• ◦

◦

1 3 4 5

2

6

E7

◦ ◦ ◦ ◦ ◦ •◦

◦

1 3 4 5

2

6 7

Figure 1. Some cominuscule parabolic quotients

4. Distributive subgraphs of Kac-Moody graded graphs

In this section we apply Theorem 3.2 to the dual graded graphs constructed in Section 2.
Let g = g(A) be the Kac-Moody algebra associated to the generalized Cartan matrix A and let W be

its Weyl group. Let W fin ⊂ W be a finite parabolic subgroup corresponding to some index set I ′ ⊂ I. Now
suppose that W fin has a distributive parabolic quotient as in Theorem 3.1 corresponding to J ⊂ I ′. We let
W J ⊂ W fin denote the distributive parabolic quotient.

Now let (Λ, K) ∈ P+ × Z+ and let (Γs(Λ), Γw(K)) be the pair of dual graded graphs constructed in
Section 2. By restricting to the subset of vertices W J ⊂ W fin ⊂ W we obtain induced subgraphs ΓJ

s (Λ)
and ΓJ

w(K). These graded graphs will no longer be dual, since they are finite, but they still have rich
combinatorics.

Theorem 4.1. The induced graded subgraphs ΓJ
s (Λ) and ΓJ

w(K) are (naturally) distributively labeled
posets.

Proof. By definition the graded graphs ΓJ
s (Λ) and ΓJ

w(K) have the same edges as W J
strong and W J

weak.

To obtain ΓJ
s (Λ) from W J

strong we replace each edge (w ⋖ wsα) labeled with the reflection sα with the edge
(w, wsα) and integer label 〈Λ , α∨〉. The distributivity of the labeling follows from Theorem 3.2. To obtain
ΓJ

w(K) from W J
weak we replace each edge (w ⋖ sjw) labeled with the simple reflection sj with the edge

(w, sjw) and integer label 〈Λj , K〉. �

Thus ΓJ
s (Λ) and ΓJ

w(K) can be thought of as the poset of order ideals in some integer labeled poset
P J and QJ . The Λ-strong and K-weak tableaux can be thought of as linear extensions of P J and QJ with
additional markings.

In the rest of the paper, we give examples of the posets P J and QJ and relate them to classically
understood tableaux. In each case we let g be of untwisted affine type, I ′ = I \{0} and J = I \{i} for a fixed
node i ∈ I ′ to be specified. We use the canonical central element for K and Λi for the dominant weight. In
this case P J and QJ are both labelings of the poset Φ(i) ⊂ Φ+ for the simple Lie algebra g′ whose Dynkin
diagram is the subdiagram of that of g given by removing the 0 node. These examples, with the exception
of G2, can be viewed as providing some additional data for the posets Φ(i), whose unlabeled versions were
given explicitly in [23]. As in [23] we shall rotate the labeled Hasse diagrams clockwise by 45 degrees so
that the minimal element is in the southwest corner. In the following, we let V J

strong and V J
weak denote the

vertex-labeled posets such that W J
strong = J(V J

strong) and W J
weak = J(V J

weak).

4.1. Type A
(1)
n . Let i ∈ I ′ be arbitrary. The poset Φ(i) consists of elements αp,q = αp + · · · + αq for

1 ≤ p ≤ i ≤ q ≤ n. The weak labeling of Φ(i) is given by αp,q 7→ sp+q−i. For example, for n = 7 and i = 3
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and abbreviating αp,q by pq and sj by j, the labelings of Φ(i) by positive roots and simple reflections are
given by:

V J
strong =

1314151617
2324252627
3334353637

V J
weak =

1 2 3 4 5
2 3 4 5 6
3 4 5 6 7

All labelings in P J and QJ are given by the constant 1. The resulting strong and weak tableaux are usual
standard tableaux.

4.2. Type C
(1)
n . Let i = n. Let αi = ei − ei+1 for 1 ≤ i ≤ n − 1 and αn = 2en where ei is the

i-th standard basis element of the weight lattice Zn. Then Φ(n) consists of the roots αi,j = ei + ej for
1 ≤ i ≤ j ≤ n. We have a∨

i = 1 for all i. For n = 4 we have

V J
strong =

14131211
242322
3433
44

V J
weak =

1 2 3 4
2 3 4
3 4
4

P J =

2 2 2 1
2 2 1
2 1
1

QJ =

1 1 1 1
1 1 1
1 1
1

The strong tableaux are shifted standard tableaux with two kinds of markings on offdiagonal entries; these
are the standard recording tableaux for shifted insertion [17]. The weak tableaux are standard shifted
tableaux.

4.3. Type D
(1)
n . Let i = n. Letting αi = ei − ei+1 for 1 ≤ i ≤ n − 1 and αn = en−1 + en, the roots

of Φ(n) are given by αp,q = ep + eq for 1 ≤ p < q ≤ n. We have a∨
j = 1 for j ∈ {0, 1, n − 1, n} and a∨

j = 2

otherwise. For n = 5 we give the labelings of Φ(n) below. Note the 1 in the upper left corner of QJ .

V J
strong =

15141312
252423
3534
45

V J
weak =

1 2 3 4
2 3 5
3 4
5

P J =

1 1 1 1
1 1 1
1 1
1

QJ =

1 2 2 1
2 2 1
2 1
1

4.4. Type E. The computations in this section were made using Stembridge’s Coxeter/Weyl package
[22]. In both of the following cases, P J has all labels 1.

For E
(1)
6 and i = 1 with the Dynkin labeling in Figure 1,

V J
weak =

1 3 4 5 6
3 4 2

2 4 5
1 3 4 5 6

QJ =

1 2 3 2 1
2 3 2

2 3 2 1
1 2 3 2 1

.

For E
(1)
7 and i = 7 with the Dynkin labeling in Figure 1,

V J
weak =

7
6
5

2 4
7 6 5 4 3
6 5 4 3 1
5 4 2

2 4 3
7 6 5 4 3 1

QJ =

1
2
3

2 4
1 2 3 4 3
2 3 4 3 2
3 4 2

2 4 3
1 2 3 4 3 2

4.5. Type G
(1)
2 . This case does not correspond to a cominuscule root. Pick i = 1 and let α1, α2 be the

two simple roots with α1 the short root, so that the highest root is 3α1 + 2α2. Then a∨
1 = 1 and a∨

2 = 2.
Abbreviating the reflection spα1+qα2

by pq, we have

V J
strong = 1 31213211 P J = 1 3 2 3 1

and

V J
weak = 1 2 1 2 1 QJ = 1 2 1 2 1
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