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Dual equivalence graphs, ribbon tableaux and Macdonald polynomials

Sami H. Assaf

ABSTRACT. We make a systematic study of a new combinatorial construction called a dual equivalence
graph. Motivated by the dual equivalence relation on standard Young tableaux introduced by Haiman, we
axiomatize such constructions and prove that the generating functions of these graphs are Schur positive.
We construct a graph on k-ribbon tableaux which we conjecture to be a dual equivalence graph, and we
prove the conjecture for k < 3. This implies the Schur positivity of the k-ribbon tableaux generating

functions, é;k)(x;q), introduced by Lascoux, Leclerc and Thibon. From Haglund’s monomial expansion
for Macdonald polynomials, this has the further consequence of a combinatorial Schur expansion of the
transformed Macdonald polynomials H, (z;¢,t) when p is a partition with at most 3 columns.

1. Introduction

The immediate purpose of this paper is to establish a combinatorial formula for the Schur expansion
of the k-ribbon tableaux generating functions known as LLT polynomials when k& < 3. As a corollary, this
yields a combinatorial formula for the Kostka-Macdonald polynomials for partitions with at most 3 columns.
Furthermore, we conjecture that the construction used generalizes to arbitrary k. Our real purpose, however,
is not only to obtain the above results, but also to introduce a new combinatorial construction, called a dual
equivalence graph, by which one can establish the Schur positivity of polynomials expressed in terms of
monomials.

In Section 2, we introduce notation for familiar objects in symmetric function theory, for the most
part following the notation of [Mac95]. Section 3 is devoted to the development of the theory of dual
equivalence graphs. We review the original definition of dual equivalence given in [Hai92], and in Section
3.1 show how from this we obtain a graph whose vertices are given by standard Young tableaux and whose
connected components are indexed by partitions. In Section 3.2, we present an axiomatization of a general
dual equivalence graph and state two main theorems which justify this axiomatization and indicate its
significance.

With these constructions in place, Section 4 contains the first application of dual equivalence graphs
from which we obtain a combinatorial interpretation of the Schur expansion of LLT polynomials. Section
4.1 begins by recalling the original definition given in [LLT97], and in Section 4.2 we give an equivalent
framework which will facilitate the constructions to follow. In Section 4.3, we present the main theorem
of this section, a combinatorial proof of Schur positivity of LLT polynomials when k£ < 3, and we give the
idea of the proof and an indication of how it may generalize to arbitrary k. Extending this example, in
Section 4.4, we use the combinatorial expansion of Macdonald polynomials in terms of LLT polynomials
from [Hag04, HHLO05a] to give a combinatorial description of the (g, t)-Kostka numbers.

2. Preliminaries

We represent an integer partition A by a decreasing sequence of its (nonzero) parts
)\:()\17)\27"'7)‘771)7 )\IZAQZZAm>O
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We may also write
A= (1" 2m2 00

where m; is the number of times i occurs as a part of \. We denote the size of A by |A| = >, Xi. If |[A\| =n,
we say that A is a partition of n. Given \, we have the conjugate partition A\’ defined by

/
)\J == E m;.
i>j

The Young diagram of A is the set of points (7,7) in the Z x Z plane such that 1 < i < A;. We draw
the diagram so that each point (i,7) actually gives the cell of the grid that is southwest of the point. For
example, the Young diagram for A = (5,4,4,1) is

We will write A for both the partition and its diagram.

For a partition diagram, the content of a cell indexes the diagonal on which it occurs, i.e. ¢(x) = j —i
when the cell z lies in position (4, j) € Z x Z.

For partitions A, u, we write u C A whenever the diagram for p is contained within the diagram for A,
equivalently p; < \; for ¢ > 1. In this case, we define the skew diagram v = \/p to be the set theoretic
difference A — p.

Let A,, A denote the alphabets {1,...,n}, N, respectively. A filling of a (skew) diagram X is a map

S:A— A

A semi-standard Young tableau is a filling which is weakly increasing along each row of A and strictly
increasing along each column. A semi-standard Young tableau is standard if it is a bijection from A to A,
where n = |A|. For A a partition of n and p a composition of n, we define

SSYT()\) = {semi-standard tableaux T': A\ — A}
SSYT(A\, i) = {semi-standard tableaux T": A — A with entries 1#+,2#2 . .}
SYT(A) = {standard tableaux T : A — A,,} = SSYT(), (1™)).

For T' € SSYT(\, 1), we say that T has shape A and weight . Given a semi-standard Young tableau 7', the
content reading word of T is the word obtained by reading the entries of T" along diagonals from southwest
to northeast, starting with the smallest content.

We have the familiar bases for the ring of symmetric function from [Mac95]: the monomial symmetric
functions my, the elementary symmetric functions ey, the complete homogeneous symmetric functions hy,
the power sum symmetric functions py and the almighty Schur functions sj.

Recall the Hall inner product (—, —) on symmetric functions defined by

<8)\,Sﬂ> = 5)\# = <mA,h#>,

which makes the Schur functions into an orthonormal basis. The Kostka numbers, K ,, give the change of
basis from the complete homogeneous symmetric functions to the Schur functions,

<h#,SA> = KA# = <5Aam,u>v
or equivalently

hMZ E K)\7MS)\; S\ = E K>\7Mmu.
A Iz

Thus the Kostka numbers also give the highest weight multiplicities for GL,, modules. Throughout this
paper, we are interested in certain one- and two-parameter generalizations of the Kostka numbers.
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3. Dual equivalence graphs

Dual equivalence was first defined by Haiman [Hai92]. The relation to which it is “dual” is jeu-de-taquin
equivalence under the Schensted correspondence. In particular, two permutations are dual equivalent exactly
when the inverse permutations are jeu-de-taquin equivalent.

DEFINITION 3.1. An elementary dual equivalence on three consecutive letters i—1,,i+1 of a permutation
is given by switching the outer two letters whenever the middle letter is not i.

SRR o R 1= - B U I - R ST I IR SR

Two permutations are dual equivalent if one can be transformed into the other by some sequence of elementary
dual equivalences. Two standard tableau are dual equivalent if their content reading words are.

3.1. The standard dual equivalence graph G,. We can construct a colored graph whose vertices
are standard tableau from this relation in the following way. Whenever two standard tableaux 7', U have
content reading words which differ by an elementary dual equivalence for i—1,4,i41, connect T" and U with
an edge colored by 4. It is clear that the connected components of the graph so constructed will correspond
to the dual equivalence classes of standard tableaux. Let G, denote the subgraph of tableaux of shape A.
The following proposition tells us that the Gy exactly give the connected components of the dual equivalence
graph.

PROPOSITION 3.2 ([Hai92]). Two standard tableauz on straight shapes are dual equivalent if and only
if they have the same shape.

For any subset D C {1,...,n — 1}, Gessel [Ges84] defined the quasi-symmetric function

(3.1) Quo(@) = > wip-w,.

i1 <o
ij=tj41=>J¢D

We can use Gessel’s quasi-symmetric functions to define a generating function on the vertices of a dual
equivalence graph. First we add a signature for each vertex, which may be regarded as an indicator function
for a subset of {1,...,n — 1}, setting ¢ € D if and only if o; = —1.

DEFINITION 3.3. Let T be a standard tableau on A,, with content reading word w. Define the descent
signature o(T) € {£1}"~1 by

o +1 if ¢ appears to the left of i + 1 in w
(32) o(I)i = { —1 if 1+ 1 appears to the left of ¢ in w

The generating function associated to a connected component Gy, |A| = n, is given by

(3.3) gr(z) = Z Qn,o(v)(T)-

UEV(gk)

Recall the following combinatorial formula for (skew) Schur functions
sa(z) = Z zt
TESSYT(N)
M1, 12

where 27" is the monomial z{"24?--- when T has weight u. Gessel changed this formula into a sum over
standard tableaux, which shows that g (z) is nothing new, but just that ubiquitous Schur function sy(z).

PROPOSITION 3.4 ([Ges84]). The (skew) Schur function sx(x), |A\| = n, can be expressed in terms of
quasi-symmetric functions by

S)\(!E) = Z Qn,o(T) (CC)

TESYT(N)
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3.2. Axiomatization of dual equivalence. Our goal now is to characterize when a given colored
graph G with signed vertices “looks like” a dual equivalence graph. The axiomatization given below comes
from analyzing the local properties of the standard dual equivalence graph, and abstracting away the depen-
dence on tableaux.

Let V be a vertex set with signatures given by o : V' — {£1}"¥~1. Let E be a collection of colored edges
between (distinct) vertices of V on the palette {2,3,...,n—1}, with n < N. Let E; C E denote those edges
colored by i.

DEFINITION 3.5. G = (V, 0, E) is a dual equivalence graph if the following hold:

(ax1l) Forw € Vand1 <i<n, o(w);—1 = —o(w); if and only if there exists z € V such that {w, z} € E;.
Moreover, x is unique when it exists.
(ax2) Whenever {w,z} € E;,

olw); = —o(x); forj=1i—-1,4
o(w)p o(x), forh<i—2 and i+1<h.

(ax3) Whenever {w,z} € E;,
(a) if o(w)i—2 = —0(x)i—2, then {w,z} € E;_q;
(b) if o(w)iy1 = —o(x)iy1, then {w,z} € E;q if i+ 1 <n, and
o(w); = —o(w)it1 if i+1=mn.
(ax4) For 3 < i < n, every non-trivial connected component of the subgraph (V,o, E;_2 U E;_1 U E;) is
one of the following;:

i—1 i

[}
=2
i—2 i i—1
[ ] [ ]

(ax5) Whenever |i — j| > 3, {w,z} € E; and {z,y} € E;, there exists v € V such that {w,v} € E; and
{v,y} € E;.

We can quickly verify that each G, satisfies the above axioms. Axiom 1 follows from the fact that T
admits an elementary dual equivalence for i—1, 7, i+1 exactly when 7 does not occur between i —1 and ¢+ 1 in
the content reading word. For axiom 2, simply note that only two letters are interchanged by an elementary
dual equivalence, so o doesn’t change much. Axiom 3 comes into play exactly when both ¢ — 1 and i + 2
lie between 4 and ¢ + 1, so that an elementary dual equivalence applies to i—1,%,i+1 as well as 4,i+1,7+2.
Axiom 4 is a straightforward check, and axiom 5 is obvious since i—1,7,i+1 and j—1, j, j+1 have no common
letters when |i — j| > 3.

This, however, is only half of the story. Let us say that two signed, colored graphs are isomorphic if
there exists a graph isomorphism from one to the other which respects the signature of vertices and color
of edges. By looking at the structure of graphs satisfying the given axioms, we prove by induction on the
colors of the edges that the given definition is correct in the following sense.

THEOREM 3.6. Every connected component of a dual equivalence graph is isomorphic to Gy for a unique
partition A.

For a given signed, colored graph G for which every vertex is assigned some additional statistic a, we
define the generating function G(z;¢q) by

(3.4) Gxiq) = D "V Qo (@)
veV(G)

We can, of course, include multivariate statistics, but as our immediate purpose is to apply this theory to
LLT polynomials, a single parameter suffices for now.
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Theorem 3.6 and Proposition 3.4 together give a criterion implying that G(z; ¢) is symmetric and Schur
positive, and establish a combinatorial interpretation of the Schur expansion.

COROLLARY 3.7. Let G be a dual equivalence graph with a vertex statistic o which is constant on con-
nected components of G. Let C(\) denote the set of connected components of G which are isomorphic to Gy.

Then
=2 >

A cec(n)

4. An application: LLT polynomials

In order to demonstrate one of the main uses of dual equivalence graphs, we present the following
application to the ribbon tableaux generating functions known as LLT polynomials.

In 1997, Lascoux, Leclerc and Thibon introduced in [LLT97] a new family of symmetric functions
which are g-analogs of products of Schur functions, denoted éflk) (z;q). Using Fock space representations
of quantum affine Lie algebras constructed by Kashiwara, Miwa and Stern [KMS95], Lascoux, Leclerc and

Thibon proved that é,(f) (x; q) is a symmetric function [LLT97]. Thus we may define the Schur coefficients,
= (k
K" (q) by

G (w:q) = YK (@)sa(a)

A
Using Kazhdan-Lusztig theory, Leclerc and Thibon proved I?gki(q) € NJg| for straight shapes p [LT00].
This has recently been extended by Grojnowski and Haiman for skew shapes [GH].

An incomplete combinatorial proof of K §QL(q) € NJg] was given by Carré and Leclerc in [CL95]. This
proof was later completed by van Leeuwen using the theory of crystals [vL05]. The proof relies heavily on
special properties of k = 2 which fail for £ > 3.

Finding a combinatorial formula for I?g\ki(q) remains open for k > 3, and the proof for £k = 3 is one
of the main results of this paper. To that end, our goal is to establish the existence of a dual equivalence
structure on standard ribbon tableaux of a given (skew) shape which preserves cospin, thereby proving
that the coefficient of sy in éflk) will g-count the number of connected components of the graph which are
isomorphic to Gy.

4.1. k-ribbon tableaux and cospin. Recall that a k-ribbon is a connected skew diagram with k cells
which contains no 2 x 2 block. To each partition A is associated a k-core, denoted Ay, which is the unique
partition obtained from A by successively removing k-ribbons in such a way that at every stage a partition
diagram remains.

By labeling each k-ribbon with a letter of A, we obtain a k-ribbon filling of A/A(xy. Such a filling gives
a semi-standard k-ribbon tableau if the ribbons labeled i form a horizontal k-ribbon strip for each ¢, and the
union of the ribbons with labels < i form a skew k-ribbon tiling for all i. A semi-standard k-ribbon tableau
is called standard if the ribbons are labeled from 1 to n without repetition. Amending prior notation, define

SSYTy(A) = {semi-standard k-ribbon tableaux of shape A/A() }.

The k-quotient of a k-ribbon tableau 7' € SSYT}()) is the k-tuple of tableaux (T(*), ... T®*=1) some
of which may be empty, which corresponds to T under the Stanton-White correspondence [SW85]. This
correspondence gives a bijection between semi-standard k-ribbon tableaux on A/A(;y, and k-tuples of semi-
standard tableaux on (A, ..., A*=1) the k-quotient of . Therefore the generating function for ribbon
tableaux reduces to a product of Schur functions,

‘ k—1
(4.1) @ = Y D S O
=0

TeSSYTk(A) =0 T eSSYT(A(®)

For a complete discussion of cores and quotients, see [JK81].
Define the spin of a ribbon R to be
ht(R) — 1

s(R) = — 9
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where ht(R) denotes the height of the ribbon. Extending this to a ribbon tableau T', define s(T") to be the
sum of the spins of the ribbons of T'.
Given a shape A, define

sp(A) = max{s(T)|T € SSYTx(N)}.

The cospin $(T) of a k-ribbon tableau T' of shape A is given by
3(T) = sip(A\) —s(T) .

Adding in ¢ with the cospin statistic gives the LLT polynomial
(4.2) CP@g) = > D" = Y FDQuor(a),

TESSYTy (1) TESYTk (1)
where o(T') may be defined analogous to equation (3.2).

4.2. k-tuples of SSYT and k-inversions. In order to establish a dual equivalence graph on ribbon

tableaux, we consider the k-quotient under the Stanton-White correspondence. For this to be a viable

approach, we need to translate the cospin statistic into a statistic on the quotient, which was done in
[SSW03, HHL05b]. We will use the statistics given in [HHL"05b].

To each piece of the k-quotient we assign a distinct integer modulo k, say (so,...,sk—1), with s; =
i (mod k). In the k-quotient, we adjust the content of a cell z of A(¥) by
(4.3) c(x) = ke(z) +s; -

The result is that the shifted content of the labels in the quotient correspond precisely with the content of
the labels of the ribbons in the ribbon tableau.

Now we can define a new statistic on the k-quotient, called the k-inversion number, which will differ
from cospin by some constant depending only on the shape. We say that cells z and y form a k-inversion if
k > ¢(y) — ¢(z) > 0 and the entry of z is larger than the entry of y. The k-inversion number, denoted invy,
for a k-tuple of tableaux is the number of such k-inversions.

This statistic motivates the following encoding of a k-tuple of semi-standard Young tableaux. Construct
a word whose letters are subsets of {1,...,n} by defining the jth letter to be the set of entries with shifted
content j. Note that A(*) contributes all letters z with &(x) = 4 (mod k). Therefore the shape of A() may
be recovered from this word from the descent set of the i (mod k) subword. With this motivation, we say
and y form a k-descent if ¢(y) — ¢(x) = k and the entry of x is larger than the entry of y.

The vertices for which we wish to establish a dual equivalence graph will be words arising as the content
readings words of standard k-tuples of Young tableaux. Fixing the shapes of the k-tuples amounts to fixing
the k-descent set, and in order for cospin to be a function on connected components, we must ensure that
the edges of the graph preserve the k-inversion number.

We define the signature o : V. — {+1}"~! by

+1 if ¢(j) <e(y+1)
(4.4) o(w); = { —1 if ) >eG+1)
for j=1,...,n— 1, where ¢(j) is the shifted content of the cell containing the letter j in w.
Note that since we are considering only words coming from standard tableaux, if ¢ and j occur in the
same content position in w, say i < j,
‘7\ s @]
L]

i|b

then cells for a and b must exist, and ¢ < a,b < j, so we may conclude that j —¢ > 3. This observation
shows that equation (4.4) defines o for all j.

4.3. Constructing a dual equivalence graph. The following involutions are the basic ingredients in
constructing edges which preserve k-descents and the k-inversion number. Recall from the previous section
that none of i—1,7,94+1 may occur with the same content. In line with dual equivalence axiom 1, say
that a word w admits an i-edge if o(w);—1 = —o(w);, i.e. w would like to be part of an i-edge. We
regard the distance between two entries of w as the difference in their contents, with the obvious extension
dist(a1, ..., a;) = max; ;(dist(a;, a;)).
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DEFINITION 4.1. Define involutions on words admitting an i-edge as follows:
di(coo i ikl i F L) = Tl e
di(coo i ikl o GF L o) = el e L e e
with all other entries remaining fixed, and define the involution ng) by
(w) = { di(w) dist(i—1,4,i+1) >k
di(w) dist(i—1,i,14+1) < k

If dist(¢i—1,4,4+1) > k in w, then d; preserves the k-inversion number and k-descent set, otherwise d;
preserves both these statistics. Therefore ng) preserves both the k-inversion number and the k-descent set
for all words.

When k = 1, the definition of Dgl) reduces to the standard elementary dual equivalence since necessarily
dist(i — 1,7,4 + 1) > 1. In this case, allowing Dgl) to define edges in the obvious way recovers the standard
dual equivalence graph on tableaux.

When k = 2 the situation is not much more complicated. Now the full description of sz) is needed,
however, it is still relatively straightforward to check that allowing sz) to define i-edges in the obvious way
gives a dual equivalence graph. For a (skew) partition p, denote this graph by gf?).

THEOREM 4.2. gff) is a dual equivalence graph for which the cospin statistic is constant on connected
components.

CoRroLLARY 4.3. K{')(g) € N[g].

The proof of Theorem 4.2 is surprisingly short, and offers a much simpler combinatorial proof of Corollary
4.3 than the proof using crystals. Sadly, when k > 3, ng) will not give the edges of a dual equivalence
graph. For instance, if w has the pattern 2431 with dist(1,2,3) < k, then élvg(w) contains the pattern 3412,
resulting in a necessary double edge for 5 and Es by axiom 3. This implies that F; may, and sometimes
must, change the positions of entries less than 7 — 1.

In general, we will construct edges F; inductively, beginning with Dl(k), thereby ensuring that the k-
descent set and k-inversion number will be preserved. The process considers “forced” double edges of the
kind discussed above and adjusts the graph slightly to account for these. The algorithm for constructing
edges depends heavily on the fact that the subgraph of all lower colored edges is a dual equivalence graph,
and relies on many properties of dual equivalence graphs in order to be well-defined. Let Qfﬁ) denote the
graph so constructed whose vertices are given by standard k-ribbon tableaux of (skew) shape p with o
defined by equation (4.4).

CONJECTURE 4.4. Q,(Lk) is well-defined and is a dual equivalence graph for which the cospin statistic is
constant on connected components.

To prove Conjecture 4.4, we look more closely at the resulting edges E; defined by the algorithm.
Interestingly, the edges break into two cases based on dist(i—1,4,i4+1). When dist(i—1,4,i4+1) > k, the edges

are simply given by the elementary dual equivalences ng) = d;, and proving that the resulting subgraph is
well-defined and satisfies the axioms can be done for arbitrary k. When dist(i—1,4,i+1) < k, the situation

is much more complicated. The crux of the argument comes down to one key lemma which characterizes the
(k)

i

connection between D
the following result.

and double edges. While this lemma remains a conjecture for k > 3, we do have

THEOREM 4.5. Conjecture 4.4 is true for k < 3.

COROLLARY 4.6. For each partition A, let C,Sk)()\) denote the set of connected components of gfﬁ’ which
are isomorphic to Gx. Then for k < 3,

G = 1 > 9 s
A \eeetP (v

In particular, éf,k) (z;q) is Schur positive.
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4.4. Macdonald polynomials. In 1988, Macdonald [Mac88] found a remarkable new basis of sym-
metric functions in two parameters which specializes to Schur functions, complete homogeneous, elementary
and monomial symmetric functions and Hall-Littlewood functions, among others. The transformed Macdon-
ald polynomials H),(z;¢,t) are uniquely characterized by certain orthogonality and triangularity conditions
as follows.

PROPOSITION 4.7 ([Hai99]). The I}H(x; q,t) are the unique functions satisfying the following:

(1) Hy(x;q,t) € Qg, ){sx[X/(1 = Q)] = p};

(2) Hu(z;q,t) € Qg, ) {sa[X/(1 = )][A = p'};

(3) Hul;q,t] =1.

The square brackets in Proposition 4.7 stand for plethystic substitution. In short, sx[A] means sy applied
as a A-ring operator to the expression A, where A is the ring of symmetric functions. For a thorough account
of plethysm, see [Hai99].

Of particular interest are the (g, t)-Kostka polynomials K au(g,t) which give the Schur expansion of
Macdonald polynomials:

(4.5) Hy(w:0.t) = 3 Ko, t)sa(a).
A

The Macdonald positivity conjecture states that K, u(q,t) € N[g, t]. Garsia and Haiman [GH93]| conjectured
that the transformed Macdonald polynomials H (x5 q,t) could be realized as the bigraded characters of the
diagonal action of S, on two sets of variables. By analyzing the algebraic geometry of the Hilbert scheme
of n points in the plane, Haiman [HaiO1] was able to prove this conjecture and consequently establish
K)vﬂ(qa t) € N[Qﬂ t]'

Another breakthrough in the study of Macdonald polynomials came with Haglund’s combinatorial for-
mula for the monomial expansion of H,(x;q¢,t) [Hag04]. This formula, which was proven by Haglund,
Haiman and Loehr [HHLO5a], does not give a combinatorial proof of I~(>\7M(q,t) € Nig,t], but does make
the problem more accessible. Combining Theorem 2.3, Proposition 3.4 and equation (23) from [HHLO5a],
to give a combinatorial description of K au(g,t) it suffices to give a description of the Schur expansion of
certain LLT polynomials. Below we recall Haglund’s formula and show how the graphs constructed for LLT
polynomials also apply to Macdonald polynomials.

For a cell ¢ in the diagram of A, define the arm, a(c), to be the number of cells to the right of ¢, and the
leg, 1(c), to be the number of cells above c.

Let S be a standard filling of A, that is S : A — A,, where |\| = n. A descent of S is a cell (i,5) of A
such that S(i,5) > S(i,7 — 1). Denote by Des(S) the set of all descents of S. Then define the major index
of S by

(4.6) maj(S) € [Des(S) + > (o).
c€Des(S)
An ordered pair of cells ((7,4), (g,h)) is called attacking if j =h andi<g,orj=h+1andi>g. An

inversion pair of S is an attacking pair ((4,75), (g, h)) such that S(i,5) > S(g,h). Denote by Inv(S) the set
of inversion pairs of S. Then define the inversion number of S by

(4.7) inv($) € mv(S) - Y alo).
c€Des(S)
Expressed in terms of quasi-symmetric functions, Haglund’s formula is
(48) ﬁ# (33, q, t) = Z qinV(S)tmaj(S)Qn,a(S) (33)
Sip—[n]

For a given filling S, we may define the spaced row-reading word of S, denoted w(S), to be the row-reading
word of S augmented with (’s in each cell of (u}")/u. The inversion pairs defined above exactly give the
k-inversions of w(S), and similarly the descent set of S corresponds precisely with the k-descent set of w(S5),
as defined in Section 4.2. The arm and leg statistics remain unchanged, thus the k-inversion number and
k-descent set for w(S) completely determine inv(S) and maj(S) as given in equations 4.6 and 4.7. Therefore
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the dual equivalence graphs constructed for LLT polynomials hold these statistics constant on connected
components, giving rise to the following corollary to Conjecture 4.4.

THEOREM 4.8. Let p be a partition with py = k. Assuming Conjecture 4.4 holds, let gf{j} be the dual
equivalence graph for standard k-ribbon tableaur whose content reading words have Desy = D. For each

partition X, let C’l(jf:,)(/\) denote the set of connected components of g,ﬁ’j;? which are isomorphic to Gx. Then

Kaulg.ty=>Y Y m©@pmei©),

D ceafy )

In particular, by Theorem 4.5, we have a combinatorial formula for K au(g,t) when p is a partition with
at most 3 columns.
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