ON TWO-PERSON SYMMETRIC MULTI-SUIT WHIST
JOHAN WASTLUND

ABSTRACT. The game of two-person multi-suit whist is played
with a deck of cards, where each card belongs to a suit, and has
a rank within its suit. The two players receive the same number
of cards, and both players have complete information about the
deal. Play proceeds in tricks, with the obligation to follow suit, as
in many real-world card games. The objective is to win as many
tricks as possible.

We study the symmetric case of this game, in which we assume
that in each suit, the two players have the same number of cards.
We show how to assign a value from a certain semigroup to each
single-suit card distribution in such a way that the outcome of a
multi-suit deal under optimal play is determined by the sum of
the values of the individual suits. This allows us to play a deal
perfectly, provided that we can compute the values of its single-
suit components.

It also allows us to establish certain general properties of the
game, for instance the nontrivial fact that a higher card is always
at least as good as a smaller one in the same suit.

RESUME. Le jeu de whist pour deux personnes est joué avec un
jeu de cartes dans lequel chaque carte appartient & une couleur,
et dans chaque couleur les cartes sont ordonnées par valeur. Les
deux joueurs recoivent le méme nombre de cartes et la donne est
ouverte. Le jeu se joue par levées, avec ’obligation de suivre la
couleur jouée. Le but du jeu est de remporter autant de levées que
possible.

Nous étudions le cas symétrique de ce jeu, c’est a dire que nous
supposons que dans chaque couleur, les deux joueurs ont le méme
nombre de cartes. Nous montrons comment donner une valeur
d’un certain monoide & chaque distribution d’une couleur, de telle
facon que le résultat d’'une donne de plusieurs couleurs aprés un
jeu optimal soit déterminé par la somme des valeurs des couleurs
individuelles. Cela nous permet de jouer une donne parfaitement,
a condition que ’on puisse calculer les valeurs de chaque couleur
individuelle.

Cela nous permet aussi d’établir certaines propriétés générales
de ce jeu, notamment le fait qu’une carte de valeur supérieure est
toujours au moins aussi bonne qu’une carte inférieure de la méme
couleur.
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1. THE GAME OF TWO-PERSON WHIST

1.1. Rules of the game. The game of two-person whist is played
with a deck of cards. Each card belongs to a suit, and within each suit,
the cards are ordered by rank. Real-world card packs sometimes have
4 suits with 13 cards in each, but we allow for any number of suits, and
any number of cards in each suit.

The cards are distributed between the two players, so that both
players receive the same number of cards. We assume that both players
have complete information about the situation. One of the players is
said to have the lead. The player with the lead plays, or leads, one of
his cards. The other player, in response to this, plays one of his cards.
If possible, the second player has to follow suit, that is, he has to play
a card of the same suit as the one that was led. The player who played
the highest card in the suit that was led wins the ¢rick, and obtains the
lead. The cards that were played are removed, and play continues until
all cards have been played. Each player tries to win as many tricks as
possible.

This game is a pure form of a common type of card game, trick taking
games. Trick taking games exist in many different forms, and their
history goes back to the early fifteenth century [6]. Here we assume
that the game is played between two people, and further that it is
played with perfect information. Under these assumptions, an optimal
strategy exists and can in principle be computed. The outcome of
the game under optimal play is determined by the distribution of the
cards. The assumption of perfect information is often not realistic in
actual play, but a general understanding of the game should probably
start from knowledge of the playing technique in its perfect information
counterpart.

In this paper, our approach is based on evaluating each suit sepa-
rately, and then adding the values of the individual suits to obtain a
value for the complete card distribution. We focus on a special case
where this idea works well.

1.2. The symmetric case. Throughout the paper, we will assume
that in each suit the two players have the same number of cards. Such
a card distribution is called symmetric. If this condition is satisfied
initially, then the player not on lead will always be able to follow suit,
so the symmetry will persist throughout the game. In a symmetric deal,
the number of tricks where the lead is in a particular suit is determined
by the number of cards in that suit, and does not depend on how the
cards are played. An advantage of studying symmetric deals is that
the effect of a particular suit on the game as a whole can be measured
and evaluated by comparing play and outcome with the deal obtained
by removing the suit from both hands.
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It is notable that symmetric positions arise “naturally” in a certain
type of endgame in bridge called strip squeeze. This endgame arises
when a player, usually a defender, has to discard on a long suit while
retaining a guard in certain other suits. He can then sometimes be
forced, stripped, down to the same card distribution as one of his op-
ponents.

Because of the limited number of cards on each hand, such endgames
involving only two players can in practice always be handled by follow-
ing a few well-known rules of thumb. Therefore the problems consid-
ered in this paper generally do not present themselves in actual play,
which is why the theory developed here has not been discovered by
card players. The results presented here can be regarded as an answer
to the question: “How hard can a position in bridge or whist be, if there
are only two players involved, and the card distribution is symmetric
and known to both players?”

1.3. Conventions. We assume that the game is played between two
players called East and West. Our sympathies are usually with West.
This convention is customary in combinatorial game theory, where the
players are usually called Left and Right. The author thinks it is more
in the spirit of card games to use the labels West and East. When
we speak of the outcome of a deal, we mean the number of tricks that
West will take with optimal play from both sides. When possible, we
use the standard ranks from 2 to 10, Jack, Queen, King, and Ace.

1.4. Aim of the paper. From the point of view of computational
complexity, a game such as whist can be regarded as solved when a
polynomial time algorithm is found that computes the game-theoretical
value of any given deal, as well as an optimal move in any given sit-
uation. A polynomial time (in fact almost linear time) algorithm for
computing the outcome of single-suit whist was given in [7].

We do not solve the game of symmetric multi-suit whist in this sense.
Instead, our aim is to show how to assign values (from a certain semi-
group) to individual suits in such a way that the sum of the values
of the suits in a multi-suit game determines the outcome of the game
under optimal play. This includes assigning a rational number to each
single-suit deal reflecting the average value of this suit in a multi-suit
game. The theory developed for symmetric multi-suit whist includes
the technique known to bridge players as elimination and throw-in.

Whist is not a combinatorial game in the strict sense, since the move-
order is not alternating, and the objective is to win as many tricks as
possible, rather than to make the last move. Therefore the theory de-
veloped in [1] and [2] does not directly apply to whist. However, as
readers familiar with combinatorial game theory will necessarily no-
tice, we make use of many of the ideas and methods of this theory.
Some of the concepts that we introduce, like mean value, simplicity,
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numbers, and infinitesimals, have direct counterparts in the theory of
combinatorial games as developed in [2].

2. FROM SINGLE- TO MULTI-SUIT WHIST

2.1. Background. Two-person whist played with a single suit was
solved by the author in [7]. We do not make use of this solution,
but in principle, the outcome of a single-suit card distribution under
optimal play can be regarded as known. A reasonable approach to the
symmetric multi-suit game would be to calculate the number of tricks
we can take in each suit, and then add these numbers together. This
approach, although too naive in general, obviously works well in many
cases. Consider the following deal:

West : Fast :
(1) & AK 6 QJ
Q Al Q0 KQ

O K109 S AQI

West can count two tricks in spades and one trick in each of hearts
and diamonds. To evaluate the trick-taking potential in spades and
hearts, we do not even have to take into account how the lead will
pass between the players during the game, since they will produce
the same number of tricks regardless of how the cards are played. In
diamonds, West clearly cannot get more than one trick. On the other
hand, as soon as East leads a diamond, whether high or low, West will
be certain to win a trick with the king. West can therefore refuse to
play diamonds as long as possible. If at the end he is on lead with only
the three diamond tricks left to play, he can lead a small diamond,
and then score his king in one of the last two tricks. He can therefore
consider the diamond king to be worth one trick. On the deal as a
whole, West will be able to take 2 + 1 4+ 1 = 4 tricks.

In other cases, the outcome of a single-suit game depends on the
initial location of the lead. An elementary fact about the single-suit
game, proved in [3], is that having the lead is never an advantage, but
on the other hand may cost at most one trick. The solution in [7] is
based on assigning to each deal a number, which is half of an integer.
This number is a measure of the number of tricks that West can take,
and if not an integer, it should be rounded to an integer in favor of
the player not on lead. Hence this number represents the mean value
of the number of tricks that West can take with and without the lead.
The simplest case of a non-integral value is the following:

West : FEast :
(2) AQ KJ
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The value of this card distribution for West can be described by the
number 3/2, which means that West will get 1 trick if he has the lead,
but 2 tricks if East has the lead.

Interestingly, from a multi-suit perspective, the number 3/2 also hap-
pens to represent the mean value of this card distribution in another
sense, analogous to the concept of mean value of a combinatorial game.
Consider for example:

West : FEast :
& AQ 6 KJ
(3) 0 AQ O KJ
¢ AQ ¢ KJ

% AQ % KJ

Whether or not West will be able to score the queen in a particular
suit depends only on who makes the first lead in the suit. If East leads
a certain suit, West will immediately be able to cash two tricks in that
suit. If West leads the suit, then East will win a trick with the king,
immediately or later. With correct play, whenever East is on lead,
West will cash two tricks in the suit led. Then West on lead will cash
the ace of another suit and continue with the queen. East gets a trick
for his king, and the lead is back with East. Hence in this case, West
will get 6 of the 8 tricks, regardless of the initial position of the lead,
and in general, with any number of suits with this distribution, West
will score 3/2 times the number of suits, rounded to an integer in favor
of the player not on lead.

2.2. Assigning numbers to suits. It is natural to conjecture that
the outcome of a deal in which every suit has a non-integral value in
this sense can be determined by adding the values and rounding to
the nearest integer. The following theorem is proved later in a more
general form.

Theorem 2.1. Suppose that we assign the number n + 1/2 to any
single-suit deal in which West will take n tricks with the lead and n+1
tricks with East on lead. Then in a multi-suit deal where every single-
suit component is of this type, the outcome under optimal play is ob-
tained by summing the numbers assigned to each suit, and if the sum
s mot an integer, rounding in favor of the player not on lead.

For example, in the deal

West : FEast :
4 & AQ 6 KJ
(4) QO AKJ Q Q109
S AJ9 $ KQ10

we count 1+ 1/2 for the spades, 2 + 1/2 for the hearts, and 1+ 1/2
for the diamonds. Note that whenever East leads the diamond king,
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West should play low. This adds up to 5+ 1/2. Consequently, West
can take five tricks with the lead, and six tricks if East is on lead.
If we add a club suit to make it

West : Fast :

& AQ 6 KJ
(5) O AKJ © Q109

S AJ9 $ KQ10

& K1098 d AQJT

the sum will be (1+1/2)+ (2+1/2) + (1 +1/2) + (1 +1/2) =7,
indicating that West will get 7 of the tricks regardless of the initial
position of the lead.

It becomes clear from a few examples that the situation can be more
complicated if the deal contains suits which played separately would
yield the same number of tricks regardless of the position of the lead.
We can try to evaluate the deal

West : Fast :
(6) & AQ 6 KJ
O A QO K

to (14+1/2)+1 =2+ 1/2, but in fact, West will not get more than
two tricks even if East has the lead, since East will simply transfer the
lead to West by playing hearts. With

West : FEast :
(7) ® AQ 6 KJ
QA 0 K
O K QA

it is an advantage to have the lead. Apparently the number 2 4 1/2
should be rounded in favor of the player on lead in this case.

As the following example shows, it cannot be consistent to assign
the value n to every single-suit deal that, played by itself, produces n
tricks for West. Hence there is no analogue of Theorem 2.1 for suits of
this type.

West : Fast :
(8) ®d AK 10 d QJI
Q AK 10 QQRJI9

Here each suit would be worth two tricks for West, if played sepa-
rately, since even if East is on lead, he can secure one trick by leading
a high card. However, on the deal as a whole, West can take five of
the six tricks, provided East has the initial lead. In order not to give
West a cheap trick immediately, East will lead one of his honors, say
the spade queen. West wins the trick and plays ace, king, and ten of
hearts. This way East gets the lead (unless he surrenders by playing
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the queen and jack of hearts under West’s ace and king), and is forced
to lead spades a second time. This gives West a trick for the spade ten.

In view of Theorem 2.1, we can conjecture that it is consistent to
assign the value n+1/2 to any deal, single or multi-suit, that produces
n tricks for West on lead, and n + 1 tricks for West with East on lead.
The following two theorems, as well as Theorem 2.1, are derived as
corollaries of Theorem 9.1.

Theorem 2.2. [t is consistent to assign the value n+1/2 to any deal
where West gets n tricks with the lead and n+1 tricks without the lead,
in the sense that whenever a deal can be split into components of this
type, the outcome of the deal as a whole will be the sum of the values
of the components, rounded in favor of the player not on lead.

Theorem 2.3. [t is consistent to assign the value n+1/2 to any deal
where West gets n tricks with the lead and n+1 tricks without the lead,
in the sense that whenever a deal has this property, we can assign values
to its single suit components that add up to the value of the whole deal,
and so that the value of a suit still depends only on the distribution of
the cards in that suit.

If this is correct, then the deal (8) should have value 5 + 1/2, and
consequently, the individual suits should have value 2 + 1/4. Indeed,
under reasonable assumptions on correct play, we can see that the mean
value of A K10 vs. Q J 9 ought to be 24+1/4. Whenever East is on lead,
he will lead a queen or a jack. West takes the trick and continues with
ace, king, and ten of a different suit, putting East back on lead. This
continues until half of the suits have been played out completely, and
the remaining suits are distributed A 10 vs. J 9 (or equivalently). This
combination is equivalent to A Q vs. K J discussed earlier. West will
now be able to take a trick with half of his remaining tens. This means
that he gets an extra trick for every four suits. Careful analysis shows
that the number of tricks that West gets with n suits distributed this
way is indeed (2 + 1/4)n rounded to the nearest integer, and if n = 2
(mod 4), rounded in favor of the player not on lead.

3. THE NUMERICAL VALUE OF A CARD DISTRIBUTION

3.1. The working hypothesis. In Section 2, we assigned a numerical
value to certain single- and multi-suit deals, namely those that occur
as components of deals where having the lead costs a trick. At the
same time, it seems even more natural to evaluate a suit distributed
for example A vs. K, A Kvs. Q J,or A J vs K Q, to the number
of tricks that the suit is bound to produce. As we prove later, these
card combinations cannot occur in a deal where having the lead is a
disadvantage.

The following statement has served as a working hypothesis that
has motivated the approach taken in the paper. It combines the two
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ways of assigning numbers to individual suits. This statement too is a
consequence of the main theorem (Theorem 9.1). It defines what we
will refer to as the numerical value of a card distribution.

Theorem 3.1. To every symmetric multi-suit deal D, we can assign a
number N (D) called the numerical value of D, satisfying the following:

(A) The numerical value of a multi-suit deal is the sum of the numer-
1cal values of its single suit components.

(B) Regardless of the location of the lead, the outcome of a deal differs
by at most 1/2 from its numerical value.

We do not prove at this point that (A) and (B) are consistent. For
the moment, we will assume the existence of a function N satisfying
Theorem 3.1, and derive some of its properties. In the following, when
a statement is labeled Consequence, we mean that it will follow from
the consistency of (A) and (B). The following two statements follow
from (B) since the intervals [m — 1/2,m +1/2] and [n — 1/2,n + 1/2]
have nonempty intersection if |m —n| > 2, and intersect only in the
point n+ 1/2 if |m —n| = 1.

Consequence 3.2. The difference in outcome of a deal with East and
West on lead respectively is at most one trick.

Consequence 3.3. If D is a deal in which West gets n tricks with one
of the players on lead, and n + 1 tricks with the other player on lead,
then N(D) =n+1/2.

3.2. The mean value of a deal. Let D be a deal, and let m be a
positive integer. We let m - D denote a deal which consists of m copies
of D. That is, for each single-suit component of D, the deal m - D
has m corresponding suits with the same card distribution. By (A),
N(m-D) =m-N(D). If we let a,, be the outcome of m - D with, say,
West on lead, then by (B),

lam —m - N(D)| < 1/2.

If we divide by m and let m — oo, we obtain
am
= N(D).

From this, it follows that N(D) is uniquely determined by (A) and
(B). N(D) is the mean value of the number of tricks that West will
get per copy of D when a large number of copies of D are played
simultaneously. The numerical value of a deal is therefore analogous
to the mean value of a combinatorial game.

Theorem 3.4. There is at most one function N satisfying (A) and
(B).

Consequence 3.5. A deal which always gives West n tricks regardless
of how the cards are played must have numerical value n.
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This follows since the deal must have mean value n.

Consequence 3.6. If D is a deal with n cards on each hand, and
D s the deal obtained by switching the East and West hands, then

N(D)+ N(D) =n.
This follows from the corresponding statement for the mean value.

3.3. Numerical values of some card distributions. We now show
how to compute the numerical values of some card distributions using
(A) and (B). The combination A vs. K always gives West one trick. By
Consequence 3.5, the numerical value must be 1. Similarly, N (K, A) =
0. For two-card distributions, Consequence 3.5 gives

NAK,QJ) =2

NAJ,KQ) =1
By (B),
NAQ,KJ)=1+1/2
The numerical values of the remaining two-card deals follow from Con-
sequence 3.6.

3.3.1. Three-card deals. The values
N(AKQ,J109) =3,
NAK9, QJ10)=2
and
N(A109,KQJ)=1
follow from Consequence 3.5. The values
N(AKJ, Q109 =2+1/2
and
N(AJ9, KQ10)=1+1/2
follow immediately from (B). Notice that in the case of A J 9 versus
K Q 10, if East has the lead and starts with the king or the queen,
West will get two tricks by playing low in the first trick.
In the case of A Q J versus K 10 9, West will get two tricks regardless
of the location of the lead. This does not prove that the numerical

value of this deal is 2. However, we can prove this by considering the
following two-suit deal:

West : Fast :
(9) ®OAQJ & K109
O KJ QO AQ

Here both players will try to avoid leading hearts. If West has the lead,
and leads spades, he can either cash the ace and continue with another
spade, or lead one of the smaller spades immediately. In any case, East
will cash his king of spades in one of the two first tricks, and then lead
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another spade. West will be forced to lead hearts, which restricts him
to two tricks.

If on the other hand East has the lead, and starts with a spade, then
West will cash two spade tricks and lead his third spade. Either East
has played his king of spades under West’s ace, or he is now forced to
lead hearts. In any case West gets three tricks.

This shows that the numerical value of the deal as a whole is 2+1/2.
Since the value of the heart suit is already known to be 1/2, it follows
that

NAQJ,K109) =2.

The situation would have been similar if the distribution of the
spades had been A Q 10 versus K J 9 or A Q 9 versus K J 10. Hence

NAQ10,KJ9=N(AQ9,KJ10) =2
From deal (8), we know that the numerical value of

West : Fast :
(10) & AK 10 &d QJI
Q AK10 QQJII9

must be 4 4+ 1/2, since West will get four tricks with the lead and five
tricks with East on lead. Hence

NAK10,QJ9) =2+1/4.
Similarly, with

West : Fast :
(11) O KQI & AJ10
CKQ9 Q AJ10

West will get two tricks with the lead, but three tricks if East has the
lead. The reader may wish to verify this. The strategy is similar to
that of (8). When East attacks one of the suits, West will use the other
suit to transfer the lead back to East and force him to lead a second
time from the first suit. Hence

NEKQ9,AJ10)=(2+1/2)/2=1+1/4.

The remaining three-card deals are obtained from the deals above by
switching the East and West hands.

3.3.2. Deals with more than three cards. The example

N(AK10,QJ9) =2+1/4
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can be generalized in an obvious way. Consider the following four-suit
deal:

West : Fast :
M AKQS N J1097
(12) O AKQS © J1097

O AKQS O J1097
& AKQS & J1097

West has twelve easy tricks. We claim that if East has the lead, West
will be able to score a thirteenth trick with one of his eights. If East
leads the spade jack say, then West will take this trick, cash the ace,
king, queen of hearts and lead his fourth heart. East gets the lead, and
he can do no better than lead from a new suit, say the jack of diamonds.
West takes the trick, and plays four rounds of clubs, putting East on
lead with the last one. The situation is now equivalent to (8) with East
on lead.

We will not go through all possible lines of play, but the reader can
convince himself that there is no way West can get thirteen tricks if he
has the lead in (12). It follows that

NAKQ8,J1097)=(12+1/2)/4=3+1/8.
Similarly, we have
NAKQJ6,109875)=4+1/16,
NAKQJ104,987653)=5+1/32,

and so on.

4. EXITS AND STOPPERS

4.1. The ambiguity of rounding. Theorem 3.1 specifies the out-
come of a deal in terms of its numerical value except when this value
is half way between two integers. In this section we consider some ex-
amples of deals whose numerical value is half an odd integer. We wish
to find the factors that determine which way to round the numerical
value in order to obtain the outcome.

4.2. Examples. We already know that the rounding may depend on
the location of the lead. In the example

West : Fast :
6 KJ & AQ

the numerical value is 1/2, and this should be rounded in favor of the
player not on lead. The numerical value of the deal

West : Fast :
(14) hKJ ®AQ
Q0 K O A

(13)
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is still 1/2, but here West gets a spade trick whether or not he has
the lead. This is because he has what bridge players call an exit card.
The king of hearts does not win a trick, but it provides West with a
possibility to transfer the lead to East. The deal

West : Fast :
KJ A

(15) g A g K °
O K O A

shows an example of a so called elimination and throw-in. West on
lead can eliminate East’s exit card, the king of hearts, by cashing the
ace. Then he exits with the king of diamonds. East is “thrown in” and
has to lead spades. If East has the lead, he will do the same thing to
West: cash the ace of diamonds before leading hearts.

4.3. Counting stoppers. If both players have exits, it may appar-
ently be an advantage to have the lead. Some exit suits are better
than others though, as the following examples show. The distribution
A J versus K Q provides West with an exit, since the numerical value
is 1, and in

West : Fast :
(16) o KJ & AQ
O Al Q0 KQ

West gets a spade trick whether or not he has the lead. If we give East
too an exit,

West : FEast :
& KJ & AQ
QA Q0 KQ
oA ¢ K

(17)

we would expect a situation where the lead is an advantage. However,
we discover that West always gets a spade trick. West on lead can cash
the red aces before putting East on lead with a second heart. Suppose
now that East has the lead. He can attack West’s exit by leading a
heart, but West takes with the ace, and now West has time to cash
the ace of diamonds, eliminating East’s exit, before playing the jack of
hearts.

Here the ace of hearts acts by defending West’s exit in hearts. It
temporarily stops East from cashing his heart trick, giving West time
to eliminate East’s exit in diamonds before playing his own exit card.
Such a card will be called a stopper.
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Note that the number of exits does not matter:

West : FEast :
o KJ & AQ
(18) 0 K QA
¢ A ¢ K
& A & K

The fact that East has two exits while West has only one is irrelevant,
since West on lead can eliminate both the diamonds and the clubs
before exiting in hearts.

However, the number of stoppers does matter:

West : FEast :
& KJ ® AQ
(19) QAJ Q0 KQ
¢ KQ ¢ Al

% KQ & AJ

Here East has two stoppers, and West has only one. This gives East
an edge in the fight for the second spade trick. If West leads a club or
a diamond, say a diamond, then East takes with the ace and returns a
heart. His ace of clubs now guarantees that he will have time to cash
his heart trick before playing the jack of clubs. This ensures him two
spade tricks.

5. THE SEMIGROUP OF STATES

5.1. Definitions. We introduce an additive notation for card distri-
butions. A single-suit deal is a partition of a finite totally ordered set
into two sets F and W of the same cardinality, the East and West
hands. This is denoted by [W, E|, where W and E are the West and
East hands, respectively.

A multi-suit deal is a formal sum of single-suit deals. We denote the
set of multi-suit deals by D. Hence D is the free abelian monoid over
the set of single-suit deals.

Addition is commutative, that is, we do not distinguish between the
individual suits. The deal

K, Al+[KJ, AQ],

for instance, may represent either of

West : Fast :
6 KJ & AQ
0 K Q0 A

and
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West : Fast :
h K oA
QO KJ QO AQ

In order to represent a state in the game in such a way that the
outcome under optimal play from a game-state is a function of the
state, we need to include not only the remaining cards on the two
hands, but also the number of tricks that West has already taken.
Therefore we let a state be a formal sum of an integer and a multi-suit
deal. Hence the set S of states is the direct sum

ZoD

of the integers with the set of multi-suit card distributions.

If D is a state, then the outcome x(D) of D is the pair (m, n), where
m is the number of tricks that West takes under optimal play if he
has the lead initially, and n is the number of tricks he takes if East
has the lead. Hence x is a mapping S — Z x Z. Obviously x is not
a semigroup homomorphism. Our approach is to describe x using a
semigroup homomorphism.

When we speak of a deal, we mean just a card distribution. Tech-
nically, this is a state where West has not already taken any tricks,
that is, the integer part of the state is zero. If D is a deal, then we
let |D| denote the number of cards on each of the hands, that is, the
number of tricks to be played. We let D be the deal obtained by
switching the East and West hands. Obviously, if x(D) = (m,n), then
x(D) = (ID| = n,|D| = m).

5.2. Equivalence and order of states. If D and E are two states,
then we say that D is equivalent to F, and write D = F, if for every
state F', x(D+F) = x(E+F). In other words, two states are equivalent
if they behave in the same way under addition.

If (m,n) and (m',n') are two pairs of integers, we say that (m,n) <
(m!,n') if m <m'and n <n'. If D and F are states, then we say that
D < E if for every state F', x(D + F) < x(E+ F). Clearly D = E if
and only if D < E and E < D. Hence this gives a partial ordering on
the quotient S/=.

Addition is well-defined on the equivalence classes under =, and S/=
is an abelian semigroup. If D, E and F' are states, and D < FE, then
D+F<FE+F.

5.3. Examples established by strategy-stealing. Some properties
of the ordering of states can be established by simple strategy-stealing
arguments.

Example 5.1.
[K, A] > 0.
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Proof. We have to show that if D is a state, then
x(D+[K, A]) > x(D),

in other words, West will get at least as many tricks in D + [K, A] as
in D, both when he has the lead and when East has the lead.

West can steal an optimal strategy for D when playing D + [K, A]
by pretending that the extra suit is not there. If at any point East
leads his ace in the extra suit, West plays his king, and since the lead
stays with East, West can continue to play as in D, by pretending that
the extra suit was never there. If East does not lead the extra suit,
then neither does West until possibly in the last trick. This strategy
will give West at least as many tricks in D + [K, A] as he can take in
D. O

One would perhaps think that [K, A] = 0, but this is not true. The
deal [K, A], although it does not have any trick-taking potential in
itself, may give West the opportunity to put East on lead. This in turn
may produce an extra trick in another suit. We have:

x([K, A+ K J, AQ]) =(2,2),
while
x(KJ,AQ])=(1,2)
This shows that
K, A] > 0.

Example 5.2.
K, A+ [K, Al = K, A].

Proof. Tt follows from Example 5.1 that
K, Al +[K, A] > [K, A].

We need to establish the opposite inequality. We do this by showing
that if D is any deal, then when playing D+ [K, A]+ [K, A], East can
steal an optimal strategy for D + [K, A]. Whenever East on lead is
required to cash the ace in an optimal strategy for D + [K, A], he will
cash both aces in D+ [K, A]+[K, A]. Whenever West leads one of the
two kings in D+ [K, A]+[K, A], East will take with the corresponding
ace, and immediately cash the other. Then he will steal the strategy
that he would use in D + [K, A] if West leads the king. This will hold
West to the same number of tricks in both cases. 0

These two examples show that the quotient semigroup S/= cannot
be embedded into a group.
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5.4. Further consequences of Theorem 3.1. It seems obvious that
[A, K] > [K, AJ,

but it is surprisingly difficult to prove this, or even to prove that

(20) [A, K] >0.

To prove the inequality (20), we need to consider D + [A | K], where
D is an arbitrary state, and show that West always gets at least as
many tricks as when playing D. If West has the lead, this is obvious
by strategy-stealing: West can cash the ace and then continue with an
optimal strategy for D. However, if East has the lead, the problem is
that East can transfer the lead to West by playing the king. Although
this gives West an extra trick compared to playing D, it is not clear
how West on lead can copy a strategy for D with East on lead, even if
he can afford to give back one trick.

However, by Consequence 3.2, having the lead may cost at most one
trick. Hence the inequality (20) follows from the consistency of (A)
and (B). More generally, we have:

Consequence 5.3. Let D = [W,E], and D' = [W\{z}U{y}, E],
where x < y. That is, D' is obtained from D by replacing one card
on the West hand by a higher card. Then D < D'.

In other words, a higher card is always at least as good as a smaller
one.

Proof. We have to consider playing the two sums D + E and D' + F,
for an arbitrary state £. When playing D' + E, we let West steal an
optimal strategy for D + E. West can pretend that the card y is the
card z, until the optimal strategy for D + F requires him to play the
card z. Then instead he will play the card y. If East’s card in that
trick is not between x and y, West can go on pretending that the card
he played was the card z. If East’s card is between x and y, then West
has taken an extra trick compared to playing D 4+ E. West has now
obtained the lead, so he cannot go on stealing the strategy for D + E|
but by Consequence 3.2, having the lead will cost him at most one trick
compared to not having the lead, so West’s total number of tricks will
be at least the same as when playing D + E. O

We can also establish that
AJ, KQ]>1

by strategy-stealing. When playing [A J, K Q] + D, West can avoid
leading from the suit until possibly when D is empty, and whenever
East leads the suit, West takes the first trick with the ace and returns
the jack. This way the lead stays with East, and West can continue
stealing the strategy for D.
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By Consequence 5.3, we can establish the ordering of all two-card
single-suit deals, and their positions relative to the integers:

Consequence 5.4.

(21) 0<[QJ,AK <[KJ, A Q]
<[KQ,AJ<1<[AJ, KC(Q
<[AQ,KJ<[AK, QJ<2.

6. VALUES

We here introduce a certain semigroup whose elements will be re-
ferred to as walues. Our aim is to prove that this semigroup is isomor-
phic to the quotient semigroup S/=.

For reasons that are discussed in Section 12.3, we are constructing
the values, and the mapping from states to values ”by hand”, before
proving any of their properties. In this section, we just define the set
of values, and its structure of addition, negation, order and simplicity,
without proving anything. The discussion should therefore be taken
as an attempt to informally motivate these definitions, based on the
examples given earlier.

6.1. The semigroup £ of infinitesimals.

6.1.1. Unprotected exits. We denote the value of an unprotected exit
by €. An exit for East is denoted by —e. As indicated by Example
5.2, we must have € + ¢ = €. Hence the sum of any number of exits
of the same sign equals a single exit of that sign. However, signs do
not cancel. Instead, the sum of a positive and a negative exit, or any
number of such, has the ”fuzzy” value +e. The values of unprotected
exits form a semigroup with the four elements 0, ¢, —¢ and +e.

6.1.2. Exits protected by stoppers. Stoppers add like integers. How-
ever, the full semigroup of infinitesimals is not isomorphic to a direct
sum of the integers with the semigroup of unprotected exits described
above. The reason for this is that on the one hand, one cannot have a
stopper without having an exit, and on the other hand, there are some
equivalences to take into account. If the total number of stoppers in
a deal (added with signs) is positive, so that West has more stoppers
than East, then it does not matter whether East has an exit or not.
For instance,

(22) AJ,KQ+[A,K]=1+[AJ,KQ].

We indicate the number of stoppers of an exit with an index. Hence
€ 1s the value of an exit for West, protected by k stoppers. An exit
for East with £ stoppers is denoted ¢_g, but can also be regarded as
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the negative of ¢, that is, —e,. For consistency, the unprotected exits
can be written with an index of zero.
The deal (22) shows that we must have the identity

€1 —E&p=¢&1.

6.1.3. The set of infinitesimals. The semigroup & of infinitesimals con-
sists of the elements 0, g, —¢, €¢, and ¢, for nonzero integers k.

6.1.4. Addition of infinitesimals. The infinitesimals are added as fol-
lows: 0 is the additive identity. Moreover, ¢ 4+ £y = €¢, and similarly
(—€0) + (—&0) = —ep. All other sums are evaluated by summing the
indices. If the sum of the indices is a nonzero integer k, then the sum
equals €. If the indices sum to zero, the sum is +¢.

6.1.5. The negative of an infinitesimal. As is indicated by the notation,
there is a notion of negative of an infinitesimal. We let —(g¢) = —¢&y,
—(%e0) = *eo, and for nonzero integers k, —¢ = €_. The negative
of an infinitesimal is not in general an additive inverse. Negation only
has the weaker property of being an automorphism with respect to
addition, that is, —(a+ 3) = (—a) + (—3). We still use the shorthand
a— g for a+ (—0).

6.1.6. Order of infinitesimals. The values of unprotected exits are or-
dered according to

—g0 <0< g
and
—eg < *¢¢ < &y,

with 0 and +¢( incompatible. If k£ is a positive integer, then the values
of unprotected exits are greater than —ej, but smaller than ¢,. If p
and ¢ are two nonzero integers, and p < ¢, then g, < &,.

6.2. The group Q of numbers. We let Q denote the group of ratio-
nal numbers that can be written with a power of 2 in the denominator.
In other words, Q is the localization of the ring of integers to the set
of 2-powers. The elements of Q are called numbers.

6.3. The semigroup V of values. A walue is a sum of a number and
an infinitesimal, that is, we define the set V' of values by

V=0&¢.

Values are added and negated in the obvious way: If ¢ and r are
numbers, and x and y are infinitesimals, then (¢ + z) + (r + y) =
(g+7)+ (z+vy), and —(¢ + z) = (—¢) + (—z). This implies that if «
and  are arbitrary values, then —(a+ ) = (—a) + (—(3). Negation is
therefore a semigroup automorphism.
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6.3.1. Order of values. We define order of values as follows: If ¢ and
r are numbers, and x and y are infinitesimals, then ¢ + x < r + y if
and only if either ¢ < r, or ¢ = r and z < y. This ordering has the
property that o <  if and only if —3 < —q, for all & and S.

6.4. Simplicity. There is a notion of simplicity of values, similar to
the corresponding concept for combinatorial games discussed in [2] and
[1]. We classify values from simple to more complex in the following
way:
(i) The simplest values are the half-integers, that is, the numbers of
the form k/2 for integers k.
(ii) For numbers other than half-integers, a number with smaller de-
nominator is simpler than a number with greater denominator.
(iii) Numbers are simpler than other values.
(iv) Values of the form ¢ + ¢ and g — €, where ¢ is a number, are
simpler when k£ has smaller absolute value.
(v) Values of the form ¢ &+ £y are more complex than other values.

We can describe this structure by arranging values in complexity
classes, labeled by ordinals, as follows:

(i) Half-integers have complexity 0.
(i) Numbers with minimal denominator 2¥, for £ > 2, have complex-
ity k — 1.
(iii) Values of the form ¢ + ¢, and ¢ — ¢ have complexity w + k.
(iv) Values of the form ¢ & €y have complexity w + w.

This is in analogy with the classification of combinatorial games ac-
cording to birthday. Since the complexity classes are well-ordered,
every nonempty set of values has an element of minimal complexity.

6.5. Rounding a value to an integer. The value of a deal should
determine its outcome. In Section 7.1, we construct a function val :
S — V assigning values to states. We now define a function p map-
ping a value to the corresponding outcome, that is, mapping values to
ordered pairs of integers. The idea is then to prove that y = p o val.

The function p : V — Z x Z is called the rounding function since
first of all it rounds the numerical value to the nearest integer. Let o
be a value. Then

(n,n), ifn—-1/2<a<n+1/2,
pla) =< (n,n+1), ifa=n+1/2,
(n+1,n), ifa=n+1/2+e¢,.
Note that the ordering of values can be characterized by the require-
ment that o < § if and only if for every value v, p(a+ ) < p(8 + 7).

This is what we should expect in view of the definition in Section 6 of
the ordering of states.
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If A is any nonempty discrete set of numbers, then we can define an
analogous function rounding values to pairs of elements of A. Let ¢ be
a number and z an infinitesimal. Then pa(q + ) = (a,a) if a is the
unique element of A closest to ¢, while if there is a tie between two
elements a and b of A, and a < ¢ < b, then

(a,a), if x is negative,

_ ) (b,b), if x is positive,
palg+e) = (a,b), ifz=0,
(b,a), if x = teo.

7. MAPPING STATES TO VALUES

7.1. The mapping val : S — V. In this section, we define the func-
tion val : S — V. This function has to be a semigroup homomorphism
which fixes the integers. Hence to define it, we need only specify its
values on single-suit states. This is done inductively.

We let a labeled value be a pair (P, z), where P is one of the sym-
bols E or W (for East and West), and z is a value. A labeled value
represents a situation where the player P has the lead in a deal with
value .

In our analysis, an implicit hypothesis is that it is advantageous to
have the lead, except if the value of the deal is a number. We therefore
introduce the following ordering of labeled values:

o (Pz) < (Q,y)ifzx <y,

e (E,z) < (W, z) if x is not a number,

e (E,z) > (W, z) if x is a number.

7.2. Reductions. By a single-suit state we mean a state which is the
sum of an integer and a single-suit deal. A single-suit state D = m +
[W, E] is said to be an n-card state if the hands W and E have n cards
each. f W ={Wy,...,W,} and E ={E,...,E,}, where W; < --- <
W, and E; < --- < E,, then we define the reduction D, ; of D to be
the state into which D will be transformed if in the first trick West
plays the card W; and East plays the card EF;. That is,

Dy =m+ [W\{W;}, E\{E;}] + {0 if W; < E,

We now let D be an n-card single-suit deal, and suppose that val(D’)
has been defined for every deal D' with fewer than n cards, and in
particular, on all the reductions D; ; of D. For 1 <4¢,j < n, we let

a;j = (P,val(D;;)),

where P is the player who gets the lead if West plays his sth card and
East plays his jth card. In other words, P = W ifW; > E;, and P = F
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if W; < Ej. We let
maxmin(D) = max min «; j,
i
and

minmax(D) = min max a ;.
J 2

Obviously maxmin(D) < minmax(D).

7.3. The left and right bounds on val(D). For a nonempty single-
suit deal D, we define two sets L(D) and R(D) of values, which in a
certain sense correspond to the left and right options of a combinatorial
game.

Definition 7.1. We let D be as above, so that the labeled values
maxmin(D) and minmax(D) have been defined. Then L(D) is defined
as follows:

(i) If ¢ is a number, then ¢ € L(D) if maxmin(D) > (E, q).

(ii) Moreover, if z is a nonzero infinitesimal, then ¢ + z € L(D) if

maxmin(D) > (F, ¢) and minmax(D) > (W, q + x).

The set R(D) is defined similarly:

(i) ¢ € R(D) if minmax(D) < (W, q), and

(ii) ¢—z € R(D) if minmax(D) < (W, ¢) and maxmin(D) < (E, ¢—x).

Notice that a value cannot belong to L(D) or R(D), unless its nu-
merical part belongs to L(D) or R(D) respectively. Notice also that
if x € L(D) and y < z, then y € L(D). Similarly, if z € R(D) and
y >z, then y € R(D).

7.4. The interval I(D). Let D be as above. We let I(D) be the set
of values that lie between L(D) and R(D), in other words, that do not
belong to L(D) or to R(D). The set I(D) is an interval in the sense
that if z, y, and z are values such that x <y < z, and = and z belong
to I(D), then so does y.

We prove that under certain conditions, an interval has a unique
simplest element.

Theorem 7.2. If a nonempty interval of values contains at most one
half-integer, then it has a unique simplest element.

Proof. Let I be a nonempty interval, and suppose that I contains at
most one half-integer. Since the complexity classes are well-ordered,
there is an element of I with minimal complexity. To prove uniqueness,
it therefore suffices to show that if x and y are two distinct values of the
same complexity, then unless they are half-integers, there is a simpler
value between them.

Suppose first that z and y are numbers. Then z and y can be
written p/2% and q/2* respectively, where p and ¢ are distinct odd
integers, and k£ > 2. Between two distinct odd integers there is always
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an even integer. Hence between x and y there is a number of the
form 2r/2¥ = r/2¥=!. This number has smaller denominator, and is
therefore simpler than x and y.

Suppose now that z and y are not numbers. Then we can assume that
they have the same numerical part ¢, since otherwise there is a number
between them. We must therefore have x = ¢ — ¢ and y = ¢ + ¢, for
some nonzero integer k. Hence the number ¢ is between x and y. O

Lemma 7.3. Let D be a nonempty single-suit deal as above, so that
val(D') has been defined for every reduction D' of D. Then I(D) is
nonempty. Moreover, I(D) always contains a value whose infinitesimal
part is distinct from =+e.

Proof. If the numerical part of maxmin(D) is strictly smaller than the
numerical part of minmax(D), then there is a number strictly between
them, and this number must belong to I(D). Suppose therefore that
maxmin(D) and minmax(D) have the same numerical part ¢. If ¢ does
not belong to I(D), then it must belong either to L(D) or to R(D).
By symmetry it suffices to consider the case that ¢ € L(D), that is,
maxmin(D) > (E,q). Then minmax(D) > (E,q) > (W, q). Hence
g ¢ R(D). It follows that no value with numerical part ¢ belongs to
R(D).

For some P = E or W and some nonnegative infinitesimal y, we
have

minmax(D) = (P, ¢+ y).

Hence if z is an infinitesimal greater than y, then minmax(D) < (W, ¢+
x). It follows that ¢ + x ¢ L(D), and hence that ¢ +z € I(D). O

7.5. Definition of val(D).

Definition 7.4. We let val(D) be an element of (D) of minimal com-
plexity.

We prove in Theorem 8.8 that there is no ambiguity in this definition,
that is, there is always a unique simplest element of (D). At this point
we know that (D) contains at least one element of minimal complexity,
so we can think of the function val as being defined, possibly with
some arbitrary choices. This completes the definition of val(D) for
every state D. We also notice that for single-suit deals, the value has
infinitesimal part distinct from +e.

8. LAST TRICK DOESN’'T COUNT

8.1. Reduced whist. For technical reasons, we introduce two auxil-
iary games which have the same form as whist, but with slightly dif-
ferent objectives. We first briefly discuss a game which we call reduced
whist. This game is similar to the game of whist, except that the last
trick does not count. Hence in an n-card deal, the objective is to take
as many as possible of the first n — 1 tricks.
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Lemma 8.1. In single-suit reduced whist, there is an optimal strateqy
that always saves the smallest card on the hand for the last trick. Hence
when playing single-suit reduced whist, the players can start by remov-
ing the smallest card from their hands, and then play as in ordinary
whist with the remaining cards.

Proof. We prove this by induction on the number of cards on the hand.
Consider an optimal strategy for playing a certain single-suit deal of re-
duced whist. We modify this strategy so that it never uses the smallest
card before the last trick.

If in the first trick, the strategy requires us to play a card higher
than the smallest one, then after the first trick we can, by induction,
use a strategy that saves the smallest card for the last trick. Suppose
therefore that the strategy requires us to play the smallest card in the
first trick. Then instead, we play the next to smallest card. If our
opponent plays a card which is not between our smallest and next to
smallest card, then this will not make any difference. The same player
will win the trick, and by induction, we can after the first trick use
a strategy that makes no use of our smallest card. Hence it does not
matter whether our smallest remaining card is the originally smallest
card or another one.

Suppose now that in the first trick, our opponent plays a card which
is between our smallest and next to smallest card. Then we have won a
trick that we would not have won with the given strategy, and we have
obtained the lead. By induction, we can assume that from the second
trick on, both players will use a strategy that saves the smallest card
for the last trick. Hence we can assume that after the first trick, both
players remove their smallest remaining cards from their hands, and
continue as in ordinary single-suit whist. Hence compared to the given
strategy, it will do us no harm to have wasted a higher card in the first
trick. The only difference in the situation is that we have obtained the
lead, whereas with the original strategy we would not have had the
lead. On the other hand, we have won the first trick, so in order to
prove the lemma, we only have to prove that in ordinary single-suit
whist, having the lead cannot cost more than one trick compared to
not having the lead. This is what the following theorem tells us. [

To complete the proof, we cite an already mentioned theorem from
[3]:
Theorem 8.2 (Kahn, Lagarias & Witsenhausen). In single-suit whist,

having the lead 1s never an advantage, but may cost at most one trick
compared to not having the lead.

8.2. Refined whist, a simultaneously optimal strategy. The fol-
lowing theorem holds also for multi-suit deals:

Theorem 8.3. There is a strateqy which is at the same time optimal
for whist and for reduced whist.
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We prove this theorem by introducing yet another form of whist,
called refined whist. This game has the property that its optimal
strategies are precisely the common optimal strategies of whist and
reduced whist. Since there is an optimal strategy for refined whist,
this proves Theorem 8.3.

The game is defined by the following minor adjustment of the scoring:
For every trick except the last one, West scores one point for winning,
and no points for losing. In the last trick, West gets 3/4 of a point for
winning the trick, and 1/4 for losing it. Alternatively, we can regard
this as a bonus of 1/4 for not having the lead when the game is over, and
a punishment of —1/4 for having the lead. To make things consistent,
we should therefore regard the zero state as having refined outcome
(—1/4,1/4).

It turns out that the outcome of refined whist is better approximated
by the value of the deal, than is the outcome of whist.

Theorem 8.4. An optimal strategy for refined whist is optimal for both
whist and reduced whist.

Proof. Taking at least n tricks in whist is equivalent to scoring at least
n — 1/4 in refined whist. Taking at least n tricks in reduced whist is
equivalent to scoring at least n + 1/4 in refined whist. 0

This motivates the name ”refined”. Note that scoring at least n+1/4
in refined whist cannot be expressed in terms of the outcome of whist.
For example, if we have the lead with A Q versus K J, we can score
1+1/4 in refined whist by starting with the ace, but in whist, it is still
optimal to lead the queen, which scores only 3/4 in refined whist.

8.3. Refined results for single-suit games. If we know how to play
refined whist, we also know how to play whist. It is therefore sufficient
to study the game of refined whist. Every result about this game will
yield as a corollary the corresponding result for whist.

We show that, at least for single suit hands, the converse also holds:
If we know how to play single-suit whist (and by [7] we do), then we
also know how to play refined single-suit whist.

We cite another theorem about single-suit whist that was proved in
[3]. We refer to this theorem as the monotonicity principle.

Theorem 8.5 (Kahn, Lagarias & Witsenhausen). In single-suit whist,
a high card is always at least as good as a small one. In other words, if
D and D' are single-suit deals, and D' is obtained from D by replacing
a card on the West hand by a higher one, then x(D) < x(D').

This leads to the following result for refined whist.

Lemma 8.6. In single-suit refined whist, having the lead is never an
advantage, but may cost at most half a point.
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For the proof of this lemma, we introduce the following notation: If
D is a nonempty single-suit deal, we let D, denote the deal obtained
by deleting the smallest card on each of the two hands. Notice that
the first statement of the lemma is obvious by strategy-stealing. If our
opponent has the lead, we can still play any card we want to.

Proof. Let D be a single-suit deal with n cards on each hand. Suppose
that West can score at least k + 1/4 when East has the lead. Then he
must be able to take at least k£ of the first n — 1 tricks. By Lemma
8.1, West’s smallest card cannot help him in doing this. Hence West
must be able to take at least k tricks in Dy if East has the lead. Now
suppose that West has the lead in D. He can then lead his smallest
card in the first trick. If East wins this trick, then by monotonicity, the
situation is at least as good for West as when playing D, with East on
lead. Hence West can take at least k tricks. If on the other hand West
wins the first trick, then by Theorem 8.2, he can take at least £ — 1
more tricks. In any case, West will get a total of at least k tricks, and
thereby a score of at least k — 1/4.

By switching the East and West hands and applying the same argu-
ment, we see that if West can score at least £+ 3/4 when East has the
lead, then he must be able to score at least k£ + 1/4 when he has the
lead himself. O

8.4. Uniqueness of the simplest element of /(D). Next we show
that the outcome of single-suit refined whist is determined by the value
of the deal. We need this result not to solve the single-suit game, but
in order to remove the potential ambiguity in the definition of the
mapping val.

If D is a deal, we let x'(D) be the outcome of D in refined whist.
We let p' = pa, where A is the set of numbers with fractional part 1/4
or 3/4. In other words, p' is the function that rounds a value to the
nearest rational number with a minimal denominator of exactly 4, with
the same tie-break rules as p.

Theorem 8.7. If D is a single-suit deal, then
X' (D) = p'(val(D)).

We prove this theorem by induction on the number of cards in D,
simultaneously with the following theorem:

Theorem 8.8. If D is a single-suit deal, then I(D) contains at most
one number of the form k/2 for k € Z.

Here we introduce a notational convention that will also be conve-
nient in the following. If D is a state, and we consider the possible
lines of play from D, we let D’ denote the state into which D reduces
after the first trick. This means that D' is obtained from D by deleting
the two cards played in the first trick, and adding 1 if West won the
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trick. Hence D’ depends not only on D, but also on the choices made
by East and West in the first trick.

Proof of Theorems 8.7 and 8.8. Let D be a single-suit deal. Suppose
that the two statements hold for every single-suit deal with fewer cards
than D, and in particular for every reduction of D.

We first show that there cannot be two half-integers in I(D). Sup-
pose for a contradiction that & is an integer such that both k£/2 and
(k + 1)/2 belong to I(D). Then maxmin(D) < (W, k/2). Hence if
West has the lead, East can always make sure that after the first trick,
either val(D') < k/2, or val(D') = k/2 with West still on lead. Hence
West can score at most k/2 —1/4 with the lead. On the other hand, if
East has the lead, then since minmax(D) > (E, (k + 1)/2), West can
make sure that on any lead from East, either val(D') > (k + 1)/2, or
val(D') = (k+1)/2 with East still on lead. In any case, West will score
at least (k+1)/2+1/4 = k/2+3/4 with East on lead. This contradicts
Lemma 8.6. Hence there is at most one half-integer in (D).

We now turn to the statement of Theorem 8.7. The statement clearly
holds when D = 0, since x'(0) = (—1/4,1/4). Let k be an integer,
and suppose that val(D) > k/2. We have to show that West on lead
can score at least k/2 + 1/4. We must have k/2 € L(D). Hence
maxmin(D) > (E,k/2). This means that there is a card that West
can lead, so that no matter what East does, either val(D’) > k/2, or
val(D') = k/2 with East on lead. By induction, West can score at least
kJ2+1/4.

Suppose now that East is on lead and that val(D) > k/2. Then
k/2 cannot belong to R(D). Hence minmax(D) > (W, k/2). This
means that on any lead from East, West has a reply such that either
val(D') > k/2, or val(D') = k/2 with East still on lead. By induction,
West can score at least k/2 + 1/4.

By interchanging the roles of East and West, we obtain the corre-
sponding inequalities in the other direction. O

Hence there is no ambiguity in the definition of val(D). We remark
that the non-refined version of Theorem 8.7 is an immediate corollary:

Corollary 8.9. If D is a single-suit deal, then
X(D) = p(val(D)).
8.5. An observation. In this context, we make another observation

which can be useful for computing the value of a deal.

Theorem 8.10. If D is a single-suit deal, and k is an integer, then
val(D) = k if and only if val(Dy) = k — 1/2.

Proof. Let D be an n-card single-suit deal. Suppose that val(D,) =
k —1/2. Then x(Do) = (k — 1, k). If West has the lead in D, then he
can lead his smallest card. By the same argument as in the proof of
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Lemma 8.6, West will be able to take at least k tricks. Hence he can
score at least k — 1/4 with the lead in refined whist in D. If East has
the lead in D, then West can use the same strategy as in Dq to get at
least k& of the n — 1 first tricks. Hence he can score at least k£ + 1/4
in refined whist in D. This shows that x'(D) > (k — 1/4,k + 1/4),
which implies that val(D) > k. By interchanging the roles of East
and West, we obtain the reverse inequality. Hence we have shown that
val(Dy) = k — 1/2 implies val(D) = k.

Suppose now that val(D) = k. Then x'(D) = (k —1/4,k+1/4). If
West has the lead, he must therefore be able to take at least k tricks.
This implies that he must be able to take at least £k — 1 tricks in Dy.
If East is on lead, then West can take k of the first n — 1 tricks. Hence
he can take at least k tricks in Dy. This shows that x(Dy) > (k—1, k),
which implies that val(Dy) > k£ — 1/2. Again we obtain the reverse
inequality by swapping the roles of East and West. O

9. THE MAIN THEOREM

9.1. The single-suit lemmas. Our main theorem states that the
function val : S — V determines the outcome of symmetric multi-
suit whist under optimal play. We prove this theorem simultaneously
with its refined counterpart.

Theorem 9.1. If D is a state, then
X(D) = p(val(D)).

Moreover,

X' (D) = p(val(D)).

We prove the theorem by induction on the total number of cards.
Notice that it suffices to prove the second statement. The proof is
divided into eight lemmas, each corresponding to a particular situation
in the game. Again we use the notation D’ for the state into which D
is transformed after the first trick.

The first four of these lemmas deal with the situation when West has
the lead.

Lemma 9.2. Suppose that D is a single-suit deal, and that
val(D) = q — =z,

where q s a number and x s a positive infinitesimal. Then there is
a card that West can lead such that regardless of Fast’s reply, either
val(D') > g — z, or val(D') = q¢ — x with West still on lead.

Proof. We have g € R(D). Hence minmax(D) < (W, ¢q). Since ¢ — z ¢
R(D), we have
maxmin(D) > (E,q — x).
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Lemma 9.3. Suppose that D is a single-suit deal, and that val(D) =
q+x, where q is a number and x is a positive infinitesimal. Then West
has a lead such that on every reply from East, either val(D') > q, or
val(D') = q and East gets the lead.

Proof. We have g € L(D). Hence
maxmin(D) > (E, q).

O
Lemma 9.4. Suppose that D is a single-suit deal such that
a
Val(D) = Q—k,

where a s an odd integer and k is an integer greater than 1. Then
West has a lead such that regardless of East’s reply, either val(D') >
(a —1)/2%, or val(D') = (a — 1) /2% and East gets the lead.

Proof. Since a is odd, the number (a —1)/2* can be written with a de-
nominator of at most 2¥~'. This number is therefore simpler, and
smaller, than val(D). It follows that (a — 1)/2¥ € L(D). Hence
maxmin(D) > (E, (a — 1)/2F). O

Lemma 9.5. Suppose that D is a nonempty single-suit deal, and that
val(D) = k/2, where k is an integer. Then West has a lead such that for
every reply from East, either val(D') > (k—1)/2, orval(D') = (k—1)/2
with East on lead.

Proof. Since there can be at most one half-integer in I(D), (k —1)/2
must belong to L(D). Hence maxmin(D) > (E, (k — 1)/2). O

The following four lemmas concern the situation when East has the
lead.

Lemma 9.6. Suppose that D is a single-suit deal, and that val(D) =
q+ eg9. Then on any lead from Fast, West can make sure that either
val(D') > g, or val(D') = q with East still on lead.

Proof. We have q ¢ R(D). This means that minmax(D) > (W,q). O

Lemma 9.7. Suppose that D is a single-suit deal with value q + €y,
where q is a number and k is a positive integer. Then on any lead from
East, West can make sure that either val(D') > q + €, or val(D') =
q + €1 with West on lead.

Proof. Since q + €1 is smaller and simpler than val(D), it belongs to
L(D). In particular, minmax(D) > (W, q + x_1). O

Lemma 9.8. Suppose that D 1is a single-suit deal with value q — ,
where q is a number and x s a positive infinitesimal. Then on any
lead from FEast, West can make sure that either val(D') > q — x, or
val(D') = g — z with West on lead.
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Proof. Since the number ¢ is greater and simpler than ¢ — z, it belongs
to R(D). On the other hand ¢ — x ¢ R(D). Hence maxmin(D) >
(E: q— .T) O

Lemma 9.9. Suppose that D is a single-suit deal whose value is a
number q. Then on any lead from FEast, West can make sure that
either val(D') > q, or val(D') = q with East still on lead.

Proof. We have q ¢ R(D). Hence minmax(D) > (W, q). O

9.2. Proof of the main theorem. We now put together the re-
sults of the eight single-suit lemmas, to obtain a proof of Theorem
9.1. It suffices to prove the second (refined) assertion. The proof
uses induction on the total number of cards. With the convention
X'(n) = (n—1/4,n+1/4) for every integer n, the statement of Theorem
9.1 is true for the integers, that is, for states with no cards. Suppose
that F is a nonempty multi-suit deal, and suppose that the statement
of Theorem 9.1 has been established for every deal with fewer cards.
Suppose first that West has the lead. Then we have to prove that if
m is an integer, and val(E) > m/2 £ ¢y, then West can score at least
m/2 4 1/4 in refined whist.

Suppose first that there is a single-suit component D of E whose
value has negative infinitesimal part. Then by Lemma 9.2, West can
lead a card of this suit such that either val(E') > val(E), or val(E') =
val(E) with West still on lead. By induction, West will get at least
m/2 + 1/4 points.

Next suppose that there is no suit whose value has negative infin-
itesimal part, but that there is a suit D whose value has positive in-
finitesimal part, say ¢ + x, where ¢ is a number and z is a positive
infinitesimal. Then the value of E, being the sum of the values of
the single-suit components, must also have positive infinitesimal part.
Hence val(E) > m/2 + ¢p. By Lemma 9.3, West can lead a card from
the suit D such that either val(D') > ¢, or val(D') = ¢ with East on
lead after the first trick. For the compound deal E this means that ei-
ther val(E') > m/2, or val(E') = m/2 with East on lead. By induction,
West can score at least m/2 + 1/4.

It remains to consider the case that every single-suit component of
E has a value which is a number. In this case the value of E is also
a number. Suppose first that there is a single-suit component whose
value has a denominator of at least 4. Let D be a suit whose value
has maximal denominator among all the single-suit components of E,
say 2F. Then the value of F can also be written as a fraction with
a denominator of 2%. In order for the hypothesis to be satisfied, the
value of E must therefore be at least m/2+1/2%. By Lemma 9.4, West
can lead a card from the suit D such that the value of D decreases by
at most 1/2%, with East getting the lead if the decrease is as much as



30 JOHAN WASTLUND

1/2%. Hence either val(E') > m/2, or val(E') = m/2 with East on lead
after the first trick. By induction, West scores at least m/2 + 1/4.

Now consider the case that every suit in £ has a value which is half
an integer. Then for the hypothesis to hold, the value of E must be
at least m/2 + 1/2. It therefore suffices to show that West can lead a
card such that the value of the suit led decreases by at most 1/2, with
East getting the lead if the decrease is as large as 1/2. This is exactly
what Lemma 9.5 tells us.

We have completed the case that West is on lead, and we turn to
the case that East is on lead. We have to show that if the value of F
is at least m/2, then West can score at least m/2 + 1/4.

Suppose first that East leads a card from a suit D with value ¢ + &.
Then the value of E cannot be m/2, so it must be at least m/2 + &.
By Lemma 9.6, West has a reply such that either val(D') > ¢ + &, or
val(D') = ¢ with East still on lead. This implies that either val(E’) >
m/2 + €, or val(E') = m/2 with East on lead after the first trick. By
induction, West will score at least m/2 + 1/4.

Suppose now that East leads a card from a suit D with value ¢+ ¢y,
for some positive integer k. Since there is a suit with such a value,
the value of E cannot be m/2 or m/2 + ¢y, and must therefore be
at least m/2 4+ ;. By Lemma 9.7, West has a reply such that either
val(D') > q + e, or val(D') = ¢ + €1 with West on lead. In the first
case, val(E') > val(E), and in the second case, the value of E’ will be
at least m/2 + g¢. In both cases it follows by induction that West will
score at least m/2 + 1/4.

Suppose now that East leads a card from a suit D with negative
infinitesimal part. Again the value of E cannot be a number. By
Lemma 9.8, West can make sure that either the value of D increases,
or is stays the same with West getting the lead. By induction, West
will get at least m/2 + 1/4 points.

Finally suppose East leads a card from a suit whose value is a num-
ber. By Lemma 9.9, West can then make sure that either the value of
this suit increases, or it stays the same with East still on lead. This
means that either val(E") > m/2, or val(E') = m/2 with East on lead
after the first trick. By induction, West will score at least m/2 + 1/4.

Since again the corresponding inequalities in the opposite direction
follow from interchanging the roles of East and West, the proof of
Theorem 9.1 is complete.

9.3. Some remarks.

Corollary 9.10. Theorem 3.1 is true. Hence all statements labeled
Consequence are correct.

Proof. For every state D, we define N(D) to be the numerical part of
val(D). Since val is a semigroup homomorphism, so is N. In particular,
(A) is satisfied. By Theorem 9.1, so is (B). O
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We remark that the operation of rounding a number to the nearest
integer occurs naturally also in classical combinatorial game theory.
If a partizan game is played out, until one player runs out of moves,
then the final position is an ordinal, or the negative of an ordinal.
In particular, the final position of a short game is always an integer.
Therefore, it is possible to introduce stopping conditions different from
the so called normal playing convention.

We can introduce a stopping rule by which the game ends as soon as
it reaches a position equal to an integer. This integer is then considered
to be the outcome of the game. Left is trying to maximize the outcome,
while Right is trying to minimize it. It can be shown that the outcome
of a game under optimal play depends only on the equality-class of the
game, and not on its form.

The outcome of a number with this playing convention is computed
in the same way as the outcome of symmetric whist, by rounding to
the nearest integer. If the number is half an odd integer, then it should
be rounded in favor of the player who is not making the first move.

This playing convention does not take into account whether the last
move of the game was made by Left or by Right. To incorporate this
into the game, we can give a bonus of 1/4 for making the last move.
This way, the outcome will be positive if Left makes the last move,
and negative if it is Right who makes the last move, thus reflecting the
outcome under the normal playing convention. In this “refined” game,
we compute the outcome by using the rounding function p', rounding
to the nearest number with a denominator of exactly 4.

10. ALGEBRAIC STRUCTURE AND STRATEGY OF THE GAME

10.1. Values of some single-suit deals. We are now in a position
to rigorously establish the values of some special single-suit deals.

Lemma 10.1.

val([K, A]) = eo.
Proof. The only reduction of this deal is to zero. Hence minmax([K, A])
= maxmin([K, A]) = (E, 0). It follows that L([K, A]) ={a €V :a <

0}, while R([K, A]) is the set of all values with positive numerical part.
Hence

I([K, A]) = {igo,go,gl,Eg, ce },

the set of all nonnegative nonzero infinitesimals, of which ¢y is the
simplest. O

This can be generalized to:

Theorem 10.2. If D is a nonempty single-suit deal, and every card on
FEast’s hand is higher than every card on West’s hand, then val(D) = &.
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Proof. There is essentially only one reduction of D, and supposing that
|D| > 2, this reduction is to a deal of the same type. By induction, we
can assume that the value of the reduction is £y. Hence minmax (D)
= maxmin(D) = (E, g¢). It follows that the sets L(D) and R(D) are
equal to L([K, A]) and R([K, A]) respectively, and therefore that

val(D) = val([K, A]) = &o.
U

Theorem 10.3. Let D be a single-suit deal in which West holds the
k highest cards, and where every other card on West’s hand is smaller
than every card on Fast’s hand. Provided that West holds the smallest
card, we have

val(D) = k + &.

Proof. We prove this by induction on k. The case £ = 0 is equivalent to
Theorem 10.2. If k£ > 1, there are essentially two different reductions
of D. If West plays a high card, the deal reduces to 1 plus a deal of
the same type with k£ replaced by £ — 1. By induction we can assume
that the value of such a deal is 1 + (k — 1) + e4—1 = k + 1. If
West plays a small card, then either the hand reduces to a hand of
the same type with one fewer small card on West’s hand, or to a deal
where all West’s cards are high. In the former case, we can assume, by
making a simultaneous induction on the total number of cards, that
the value of the reduction has already been evaluated to k£ + ;. In the
latter case, we can use Theorem 10.2 with the East and West hands
switched. Since only k cards remain, and the deal has value ¢y from
East’s perspective, the value must be £ — . We can conclude that
maxmin(D) = minmax(D) = (W, k + €,_1) or (E,k + ;) depending
on whether West has one or more small cards. In any case,

LD)={aeV :a<k+el,

while R(D) is the set of all values with numerical part greater than k.
Hence

I(D) = {k+€k,l€+8k+1,]€+6k+2,...}.
The simplest value in I(D) is k + &. O

Theorem 10.4. Let
D, = [AQ, KJ], D, =[AK10, QJ9], D3 = [AKQS8, J1097],
etc. With the standard numbering, Dy, is the k + 1-card deal in which
West holds 2, k+3,k+4,...,2k+2, and Fast holds 1,3,4,5,...,k+2.
Then
val(Dy) = k + 1/2".
Proof. We have x(D;) = (1,2). By Theorem 9.1, it follows that

val(D;) = 1+ 1/2. Consider Dy, for k > 2. There are essentially
four different reductions. If both players play their highest cards (or
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any equivalent cards), then the deal reduces to 1 plus a deal equivalent
to Di_;. By induction on k£, we can assume that this reduction has
value 1+ (k — 1) +1/2%=1 = k +1/2%=1. If West plays a high card and
East plays his smallest card, then by Theorem 10.3, the value of the
reduction is 1 + (k — 1) + ex,_1 = k + ex_1. If West plays his smallest
card, then the deal reduces to a deal where all West’s cards are high.
The value of this deal is k — &y or K+ 1 — ¢y depending on whether East
played one of his higher cards or not. It follows that

maxmin(Dy) = max ((E, k —ep), W,k +e4_1)) = (W, k + €_1),
and that
(23) minmax(Dy) = min (W, k + 1 — &o), (W, k +1/271))
= (W, k+1/251).
Hence I(D) is the set of values whose numerical part is strictly be-
tween k and k + 1/2871. The simplest of these values is the number
k+1/2k. O
Similarly one can prove that
val([KQ9,A J10) = 1+1/4
val((KQJ7,A1098]) = 2+1/8
val(KQJ105,A9876]) = 3+1/16

and so on.

10.2. S/= is isomorphic to V. The introduction of values in Section
6 was motivated only informally by examples of playing technique. We
now show that the semigroup of values is isomorphic to the semigroup
of equivalence classes of states. This justifies our construction of values,
since it shows that it is the simplest structure for which a statement
like Theorem 9.1 can hold. Our construction is just as complicated as
it needs to be to characterize the game.

Theorem 10.5. The function val : S — V is surjective.

Proof. Theorem 10.4 shows that the values 1/2%, for positive integers
k, all occur as values of states. It follows that all numbers are values
of states. By Theorems 10.2 and 10.3, we have

val([K, A]) = e,
val([A, K]) = 1—¢,
val([A J, KQ]) = 1+e¢y,

val([K Q, AJ]) = 1—¢.

By combining integers and suits with these distributions, all infinites-
imals can be obtained. It follows that all values occur as values of
states. U
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Here we have allowed states with negative integral part. The problem
of characterizing the values that occur as values of states with integer
part zero seems much more complicated. Obviously no negative values
can then occur. Moreover, there are many positive values that can
easily be seen not to occur. For instance, it is clear that no value
between €y and 1/2 occurs: Either there is a card on West’s hand
which is higher than some card on East’s hand, and then West will be
able to take at least one trick if East has the lead, making the value
of the deal at least 1/2, or all East’s cards are high, in which case the
value of the deal is &g.

Theorem 10.6. The function val : S — V' factors through the equiva-
lence relation =. In other words, equivalent states have the same value.

In view of Theorem 10.5, it suffices to prove the following statement:

Lemma 10.7. If x and y are distinct values, then there is a value z
such that p(z 4 z) # p(y + 2).

We prove this for general rounding functions, assuming only that
there are at least two distinct numbers to round to.

Lemma 10.8. Let A be a discrete set of numbers containing at least
two elements. If x and y are distinct values, then there is a value z
such that pa(x + z) # paly + 2).

Proof. Let a and b be distinct elements of A with a < b, and let m =
(a +b)/2. If x and y have distinct numerical parts, then there is a
number ¢ between them. If we take z = m — ¢, then z + 2z and y + 2
will be rounded in different directions. Suppose therefore that x and y
have the same numerical part, say r. If z — (m —r) and y — (m — 1)
are rounded to the same number, then the infinitesimal parts of x and
y must either both be positive, or both negative. Suppose they are
both positive. Then there are distinct nonnegative integers £ and [
such that x = r+¢, and y = r +¢;. If we let z = m —r — &, then
pa(z + z) = (b,a), while ps(y + 2) = (a,a) or (b,b) depending on
whether £ is greater or smaller than [. O

Theorem 10.9. The mapping val : S/=— V is injective. In other
words, if two states have the same value, then they are equivalent.

Proof. Let D, E and F be states, and suppose D and E have the same
value. Then D + F and FE + F have the same value. By Theorem 9.1,
D + F and E + F have the same outcome. Since this holds for every
F, we have D = E. O

Theorem 10.10. The function val is well-defined on equivalence classes
of states, and provides an isomorphism between S/= and V.

Proof. This follows from Theorems 10.5, 10.6 and 10.9. 0
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The fact that the function val : S — V provides an isomorphism
between S/= and V whether we take whist or refined whist as the
basis for equivalence between states shows that these two games are
equivalent in a very precise and natural sense: Two states are equiva-
lent, or one is smaller than the other, with respect to one of the games
precisely when the same relation holds with respect to the other game.

10.3. Normalization of scores and values. We can introduce yet
another rule for scoring which is symmetric around the origin, along
with a new mapping of states to values, such that the integers are the
unique simplest values. This is done by scoring +1 for each trick that
West wins, and —1 for each trick that East wins, and then adding a
bonus of +1/2 if East wins the last trick, and —1/2 if West wins the
last trick. The effect of this is that the scores of refined whist are
scaled up by a factor 2, and centered at the origin, but the game is
essentially the same. The outcome of normalized whist is always half
an odd integer. We can introduce another rounding function p(z1/2)
that rounds to the nearest number of this kind, with the usual tiebreak
rules. Then for every n card deal D with val(D) = ¢ + z, we let

f(D)=2q—n+x.

The outcome of normalized whist is pz11/2)(f(D)). In this setting,
there is a natural way of defining the negative of a state. If D is any
state, —D is obtained by interchanging the East and West hands, and
changing the sign of the integer part of D. The function f now has the
rather nice property that

f(=D) = =f(D).

10.4. The structure of an optimal strategy. From the single-suit
lemmas, we can make a few observations. The optimal strategy which
is implicit in the proof of Theorem 9.1 uses the following method for
choosing a lead:

First, choose the suit to lead from. The suit is chosen as follows:

(1) If there is a suit whose value has negative infinitesimal part, choose
any such suit.

(ii) If there is no suit whose value has negative infinitesimal part, but
at least one suit whose value has positive infinitesimal part, choose
any suit with positive infinitesimal part.

(iii) If the value of every suit is a number, then choose any suit whose
value is at least as complex (that is, has at least the same denom-
inator) as the value of the whole deal.

Second, choose a card to lead from that suit. When choosing a card
to lead, only the local information of the card distribution in that suit
is taken into account. Hence from a given single-suit card distribution,
it is possible always to make the same lead. For instance, we can decide
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that when leading from [A Q, K J], we always lead the ace, while from
[AJ107,K Q9 8|, we always lead the jack.

From the way we choose a suit to lead from, we see that the so called
Number Avoidance Theorem of combinatorial game theory [1] is valid
also for whist. In [1], this theorem is stated as:

Never move in a Number, unless there is Nothing else to do.

This should be interpreted in the weak sense that it is possible to
play optimally according to this rule. In the case of whist, we have the
following theorem:

Theorem 10.11. If D and E are states such that val(D) is a number,
but val(E) is not, then there is a card in E which is an optimal lead
from D + E.

Hence the rule:

Never lead from a suit whose value is a Number, unless there is
Nothing else to do.

The following examples show that the best reply to a lead may de-
pend not only on the distribution in the suit that was led, but also on
the distribution of the cards in the other suits. If East leads the spade
king from

West : Fast :

(24) aAJO & KQ10

then West should hold off in order to take the next two tricks. Suppose
instead that East leads the spade king from

West : Fast :
M AJO & KQ10

(25) 0 A Q?KQ
¢ K O A

If West plays low, East can cash the diamond ace and exit in hearts.
This holds West down to two tricks. On the other hand if West takes
the first trick with the spade ace, he can cash his heart trick and exit
in diamonds, for a total of three tricks.

The flaw of this example is that East’s spade lead is incorrect. East
should immediately eliminate diamonds and exit in hearts. This will
always hold West down to two tricks. If West decides to duck whenever
East leads spades, he will still get as many tricks as he was entitled
to in the first place. The author does not know whether there is an
example where, after an optimal lead from East, West may have to
look at the other suits before deciding on his reply.
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11. EXAMPLE DEALS

11.1. Values in actual play. We give some examples which are a
little more complicated than those given elsewhere in the paper, and
where our theory can be used to find an optimal strategy, and to prove
its optimality. We do not prove our assertions about the values of the
suits involved, but in most cases, these can quickly be verified using
Theorem 8.10 and the theorems of Section 10.1. We also refer to the
tables of the appendix.

11.2. A numerical deal. We first consider a deal whose value is a
number. This deal shows that it can sometimes be necessary to play
low to a lead, even if this doesn’t change the number of tricks obtained
in the suit that is being led.

West : Fast

(26) ®dAJIOS8 QKQ 07
© AK10 CQJI
S KQ9 O AJ10

Consider the deal (26). East leads the spade king. We can evaluate
the spade suit to 2, the heart suit to 2 + 1/4, and the diamonds to
1+ 1/4. This sums to 5+ 1/2, and since East has the lead, we expect
West to be able to take six tricks.

If West takes the first trick with the ace of spades, then the spade
suit reduces to 14 [J 9 8, Q 10 7], which has the value 2. The problem
is that West gets the lead, so on the deal as a whole, West will now
only be able to take five tricks. On the other hand, if West plays low
in the first trick, the spade suit reduces to [A J 9, Q 10 7]. This still
has the value 2, but now East is on lead, which means that West will
be able to take six tricks.

Whenever East plays another spade, West can cash two spade tricks
and exit with the last spade. This way, East will have to make the first
move in the red suits. If East leads the queen of hearts, West takes
the trick and returns the diamond king. If instead East leads a small
diamond, West takes the trick and clears the hearts with ace, king, and
ten. No matter what East does, West will either get three heart tricks
or two diamond tricks.

Here the spade suit produces two tricks almost regardless of how the
cards are played. Still it is essential that West plays low in the first
trick in order to get four tricks in the other suits.

11.3. Exiting. Our next deal (27) is an example of “exiting” in a suit
with positive infinitesimal part, when there is no suit with negative
infinitesimal part, in order to force the opponent to be the first to lead
a suit with numerical value.
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West : Fast :

®d AKQS N J1097
(27) QO AQ8T QO KJ109

S AJ107 O KQ98

o KQI & AJ10

We evaluate the spades to 3+ 1/8, the hearts to 2+¢&5, the diamonds
to 24 1/8, and the clubs to 1+ 1/4. This sums to 8 + 1/2 + &5, which
rounds to 9. Hence West should be able to take nine tricks regardless
of the position of the lead.

If West has the lead, there is only one way to accomplish this. A
lead in either of the “numerical” suits, spades, diamonds or clubs, will
weaken that suit. Instead, West has to exit by playing a small heart.
When East takes the trick with the nine of hearts, the value of the
heart suit drops to 2, but East gets the lead.

We can then distinguish two main lines: If East leads the spade jack,
West will take the trick and continue with a middle diamond (nothing
else will do!), while if East leads the diamond king, West will take the
trick and play four rounds of spades, putting East on lead with the last
one. We leave the rest of the analysis for the reader.

11.4. A race. Finally, we give an example of a “hot” deal where both
sides have exits, and the first phase of the game is a race to knock out
the opponent’s stoppers. West to play and take eleven tricks in (28).

West : Fast :

d KQ1098 MAJT65D
(28) QO AK9 Q QJ10

S AJI9T753 $ KQ10864

S KQ1086 & AJITH

The spades actually provide an exit for East, with two stoppers.
Hence this suit is worth 3 — 5. The hearts provide an exit for West,
with value 2+¢5. It can be shown, for example with the methods of [7],
that the outcome of the club suit played separately is (2, 3). It follows
that the value of the clubs is 2 + 1/2. Then by Theorem 8.10, the
diamonds have value 3. This gives a total of 10+1/2+¢,. West should
therefore be able to score eleven tricks, provided he has the lead.

When both sides have exits, the correct strategy is to attack the
opponent’s exit suits, that is, the suits whose values have negative
infinitesimal part. In this case the only way for West to take eleven
tricks is to lead a spade. On the other hand, it doesn’t matter which
one. West should not be afraid of giving East a cheap trick for the
spade jack, since there is no way to prevent this anyway. East’s natural
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defense is to play hearts consistently, but West is one step ahead, and
will be able to clear the spades before exiting with the nine of hearts.

Now the character of the game changes from a hot race of knocking
out stoppers to a cold game of numbers. East has the lead, and may
set up a trap by leading the diamond king. West is certain to get three
diamond tricks whether he takes the first one or not, but if he falls for
the temptation and wins the first diamond trick with the ace, East will
secure three club tricks by ducking when West leads the king. Instead,
West has to let East win the first diamond trick. After that he will
easily get eleven tricks.

Notice that starting with three rounds of hearts will not do. When
East gets the lead in the third trick, he can exit with a small spade. If
West then returns the spade (or club) king, East will of course refuse
to take it.

12. MISCELLANEOUS REMARKS

12.1. Computing the value of a card distribution. By inspecting
the definition of the value of a deal given in Section 7.1, we find that
there is an algorithm for computing it. Clearly, with a reasonable
representation of the elements of V', addition in V' can be computed
efficiently. Hence the problem of computing the value of a deal reduces
to that of computing the values of its single-suit components. Let D be
a single-suit deal. If we assume that the values of all reductions D; ; of
D have been computed, we can determine minmax(D) and maxmin(D).
Then we can find the set I(D). Clearly val(D) can now be computed.
The running time of this algorithm is exponential in the size of D,
since the computation of the value of an n-card deal is reduced to the
computation of values of n? n — 1-card deals. The branching factor n?
can be improved to O(n) by using the fact that when responding to a
lead, it is optimal either to take the trick as cheaply as possible, or to
play low, but the running time is still exponential.

A combinatorial game can be considered solved when a polynomial
time algorithm has been found that for any position in the game com-
putes the outcome of the game under optimal play, as well as an optimal
move for the player whose turn it is to play. In general, these two com-
putational problems can be reduced to each other in polynomial time
(see for example [3]), and are therefore considered equivalent.

In this sense, two-person symmetric whist is not yet solved. However,
we strongly believe that an efficient algorithm for computing values
exists, and that such an algorithm will soon be found. In support of
this claim, we prove the following:

Theorem 12.1. There is an algorithm running in time O(nlogn) that
detects if a single-suit deal has an integral or half-integral value.
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Proof. The proof of this uses an algorithm given in [7] that computes
the outcome of single-suit whist in time O(nlogn). Clearly a single-
suit deal D has value n + 1/2 if and only if its outcome is (n,n + 1).
By Theorem 8.10, a single-suit deal D has value n if and only if the
deal Dy obtained by removing the smallest card from each hand has
outcome (n — 1,n). O

Moreover, we know from [7] that if the cards in a single suit of size 2n
are distributed randomly, then with the notation of [7], the probability
that H(D) = H(D,) will tend to 1 as n — co. If H(D) = H(Dy), then
either D or D, will have an outcome that depends on the position of
the lead, and hence a value which is half an odd integer. It follows that
the value of D is half of an integer.

Hence we have an algorithm that computes the value of a random
single-suit deal quickly with very high probability, and which, if it fails,
still gives bounds of the form n/2 < val(D) < (n +1)/2.

12.2. Values of single-suit deals. We make a few remarks on the
problem of characterizing the values that occur as values of single-suit
deals. This question is probably related to the problem of effectively
computing the value of a single-suit deal. As mentioned in the previous
section, we do not at present have a satisfactory answer to this problem.
The sequence of card distributions given in Theorem 10.4 provides, for
every k, a single-suit deal whose value has fractional part 1/2*.

The following example, discovered through a computer search, shows
that a fractional part not on the form 1/2* or 1 —1/2 is also possible:

[131298721,1411106 5 4 3]
To verify that this deal has value 3 + 3/8, we can play the sum

[131298721,1411106543]+[AKQ8,J1097].

By considering the various lines of play, we can convince ourselves
that West will get 6 tricks with the lead, and 7 tricks with East on
lead. Hence the sum has value 6 + 1/2. Since [AK Q 8,J 109 7] is
known to have value 3 + 1/8, it follows that the other term has value
3+ 3/8.

We now present two conjectures, both supported by computer anal-
ysis of all single-suit deals with at most 10 cards on each hand:

Conjecture 12.2. If the value of a single-suit deal is of the form q+zx,
where q s a number and x is a positive infinitesimal, then q¢ must be a
nonnegative integer, and x = ;.

We could easily prove this by induction if we could prove that we
cannot have maxmin(D) = minmax(D) = (E, ¢) unless ¢ = 0. In other
words, this conjecture boils down to proving that no “new” exits are
created from suits with numerical value after [K, A], so that all suits
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with positive infinitesimal part are descendants of the ¢, created on
day one.

If this conjecture is true, then suits with non-numerical values can
indeed be described using the concept of stoppers, as is implicitly sug-
gested in the discussion in Section 4

Conjecture 12.3. If the value of a single-suit deal is a number which
1s not an integer, then the fractional part of this number must be of the
form 1/2%, 1 —1/2% 3/8 or 5/8.

We also present another conjecture, whose solution seems to require a
deeper understanding of the values of single-suit deals. The single-suit
case of this conjecture was proved in [7].

Conjecture 12.4. If the opponent leads a card that we can beat with
a card smaller than the highest remaining card in the suit, then it is
always optimal to do so. Hence with the standard numbering of the
cards, the only situation where it can be necessary to refuse to take a
trick is when we have the ace, and the opponent leads from a sequence
containing the king and queen.

12.3. The non-absoluteness of values in whist. This section deals
with an aspect of the theory of whist that makes it fundamentally
different from the classical theory of combinatorial games.

The classical theory deals with games played under the normal play-
ing convention. With this convention, the move-order is alternating,
and the winner of a game is the player who makes the last move.

With the normal playing convention, every game G has an inverse
—G with the property that G + (—G) is a second player win. The
relation H < G is then defined as meaning that G+ (—H) is a win for
Left if Right makes the first move. This means that it is a property
intrinsic to the games G and H. If we are given two games, we can
determine whether one of them is greater than the other simply by
computing the outcome of their difference. Similarly, the games G and
H are considered equivalent (in [2] they are even said to be equal), if
and only if G + (—H) is a second player win.

It is easy to prove from these definitions that G and H are equal
in this respect if and only if for every game K, G + K has the same
outcome under optimal play as H + K.

Since in general a whist deal has no additive inverse, we have taken
the latter property as our definition of equivalence. Hence we have
defined two card distributions D and E to be equivalent if for every
card distribution F', D 4+ F' has the same outcome as E + F. This
means that in order to prove that two deals are equivalent, we poten-
tially have to investigate an infinite set of other deals. Such a problem
can therefore be difficult even if the two deals in question are simple.
Indeed, we had to do a certain amount of work to prove for instance
that [A Q9,K J10]=[A Q J, K 10 9], and that [A, K] > 0.
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For this reason, we have no general methods for rigorously establish-
ing algebraic properties and order relationships in the quotient semi-
group S/= until we have constructed the semigroup V' and the mapping
val.

Somewhat surprisingly, it was much easier to prove that [K, A] > 0.
We make a few remarks on why some statements about the ordering of
deals can be proved easily by strategy-stealing, while other statements
are more difficult and seem to require the development of a general
theory of the game. The former are statements that hold universally,
regardless of the class of games under consideration, while the latter
depend on restrictions like for example the assumption that the relative
rank of two cards is determined by a total ordering of the cards within
a suit.

Suppose for example that in a particular suit S, there are four cards
which beat each other cyclically, in a scissors-paper-stone-like way.
West holds the cards a and ¢, while East holds b and d, and a beats b
which beats ¢ which beats d which beats a. If this suit is played on its
own, the player not on lead will take both tricks. This already shows
that such a suit cannot be assigned a value and incorporated in the
theory of symmetric whist. Moreover, if such a situation is admissible,
then it is no longer true that a higher card is at least as good as a
smaller one. Indeed, we can disprove the statement that [A, K] > 0
by adding S to both sides. The outcome of [A, K] + S is (1,1) while
the outcome of 0 + S is (0, 2).

In the same way, we can prove that [A Q 9, K J 10] is no longer
equivalent to [A Q J, K 10 9]. If East ison lead in [A Q 9, K J 10]+S,
he will get only one trick, while in [A Q J, K 10 9]+ S, he can get two
tricks by sacrificing the king under West’s ace.

However, the assumption that cards within a suit are totally ordered
is not necessary for the strategy-stealing arguments that prove for in-
stance that

K, A] >0
and that
AQJ, K109 <2<[AQ9,KJ10].

These relations therefore seem to be intrinsic to the games in question.

Hence we can distinguish between on the one hand “absolute” state-
ments provable by strategy-stealing arguments requiring analysis of
only the card distributions involved in the actual statement, and on
the other hand “non-absolute” statements that require a general the-
ory of the game.
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APPENDIX: TABLE OF VALUES OF SINGLE-SUIT DEALS

The following is a table of values of single-suit deals with up to
five cards, where East has the ace. The values of the single-suit deals
where West has the ace can be obtained through the identity val(D) =

D[ — val(D).

West East value
K A €0
Q J AK €0
KJ AQ 1/2

KQ |AJ 1—&
J109 |[AKQ| &
Q109 |[AKJ | 1/2
QJ9 |AK10| 3/4
QJ10 |[AK9 | 1—e,
K109 |[AQ]J 1
KJ9 [AQ10| 1
KJ10 |[AQ9 1
KQ9 |AJ10 |1+1/4
KQ10|AJ9 |1+1/2
KQJ |[A109 | 2—¢

TABLE 1. Values of deals with up to three cards.
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West East value West East value
10987 |AKQJ €0 K1098 [AQJ7 |1+1/2
J987 |AKQ10 1/2 KJ87 |[AQ109|1+1/2
J1087 |AKQ9 3/4 KJ97 [AQ108|1+1/2
J1097 |AKQS8 7/8 KJ98 |[AQ107|1+1/2
JI1I098 |AKQT7 | 1—¢3 KJ107 |[AQ98 |1+1/2
Q987 |AKJ10 1 KJ108 |[AQ97 |1+3/4
QIO87AKJY9 1 KJ109 |[AQ87 | 2—¢9
Q97 AKJS 1 KQ87 |[AJ109 |1+1/2
QI0O98|AKJT 1 KQ97 |[AJ108 |1+3/4
QJ87 |AK109 |1+1/4) |[KQ98 |AJ107 |1+7/8
QJ97 |AK108 |1+1/2| |[KQ107[|AJ98 2
QJ98 |AK107 |1+1/2| |[KQ108|AJ9T 2
QJ1I07 AK98 |1+1/2| |[KQ109|AJS8T 2
QJI08|AK97 |1+43/4) |[KQJ7 |[A1098 |2+1/8
QJI0NY9|AKSRT 2 — g9 KQJ8 |[A1097 |2+1/4
K987 |AQJ10 | 1+¢&; KQJ9 [A1087 |2+1/2
K1087/AQJ9 |1+1/4) |[KQJ10|A987T 3—€1
K1097/AQJ8 |1+4+1/2

TABLE 2. Values of four-card deals.
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West East value | West East value | West East value
98765 AKQJ10 €0 QJI76 | AK1085 2 KJ1085 | AQ976 | 2+1/4
108765 | AKQJ9 1/2 QJ985 | AK1076 2 KJ1086 | AQ975 | 2+1/2
109765 | AKQJ8 3/4 QJ986 | AK1075 2 KJ1087 | AQ965 | 2+1/2
109865 | AKQJ7 7/8 QJ987 | AK1065 2 KJ1095 | AQ876 | 2+1/4
109875 | AKQJ6 15/16 | QJ1065 | AK987 2 KJ1096 | AQ875 | 2+1/2
109876 | AKQJ5 1—¢e4 | QJ1075 | AK986 2 KJ1097 | AQ865 | 2+ 3/4
J8765 | AKQ109 1 QJ1076 | AK985 2 KJ1098 | AQ765 3— &9
Jo765 | AKQ108 1 QJ1085 | AK976 |2+ 1/4 | KQ765 | AJ1098 2
Jo865 | AKQ107 1 QJ1086 | AK975 | 2+1/2 | KQ865 | AJ1097 2
Jo875 | AKQ106 1 QJ1087 | AK965 |2+ 1/2 | KQ875 | AJ1096 2
Jo876 | AKQ105 1 QJ1095 | AK876 |2+1/4 | KQ876 | AJ1095 2
J10765 | AKQ98 |1+ 1/4|QJ1096 | AK875 |2+1/2 | KQ965 | AJ1087 | 2+ 1/4
J10865 | AKQ97 |1+1/2|QJ1097 | AK865 |2+ 3/4|KQ975 | AJ1086 | 2+ 1/4
J10875 | AKQ96 |1+ 1/2|QJ1098 | AKT765 3—eo | KQI76 | AJ1085 | 2+1/4
J10876 | AKQ95 |1+1/2|K8765 | AQJ109 | 1+4+¢e; |KQ985 | AJ1076 | 2+ 1/4
J10965 | AKQ87 |1+1/2|K9765 | AQJ108 |1+ 1/4 | KQ986 | AJ1075| 2+ 1/2
J10975 | AKQ86 |1+ 3/4|K9865 | AQJ107 |1+1/2 | KQ987 | AJ1065 | 2+ 1/2
J10976 | AKQ85 |1+ 3/4|K9875 | AQJ106 |1+ 3/4 | KQ1065 | AJ987 | 2+1/4
J10985 | AKQ76 |1+ 3/4|K9876 | AQJ105 |1+ 3/4| KQ1075 | AJ986 | 2+ 1/2
J10986 | AKQ75 |1+ 7/8 | K10765 | AQJ98 |1+ 1/2 | KQ1076 | AJ985 | 2+ 1/2
J10987 | AKQ65 2 —e3 | K10865 | AQJ97 |1+1/2 | KQ1085 | AJ976 | 2+ 1/2
Q8765 | AKJ109 | 1+¢; | K10875 | AQJ96 |1+ 3/4 | KQ1086 | AJ975 | 2+ 1/2
Q9765 | AKJ108 |1+ 1/4 | K10876 | AQJ95 |1+ 3/4 | KQ1087 | AJ965 | 2+ 1/2
Q9865 | AKJ107 |1+ 1/2 | K10965 | AQJ87 2 KQ1095 | AJ876 | 2+1/2
Q9875 | AKJ106 |1+ 1/2 | K10975 | AQJ86 2 KQ1096 | AJ875 | 2+1/2
Q9876 | AKJ105 |1+ 1/2 | K10976 | AQJ85 2 KQ1097 | AJ865 | 2+3/4
Q10765 | AKJ98 1+1/2 | K10985 | AQJ76 2 KQ1098 | AJ765 3— &9
Q10865 | AKJ97 | 1+1/2|K10986 | AQJ75 2 KQJ65 | A10987 | 2+1/4
Q10875 | AKJ96 1+1/2|K10987 | AQJ65 2 KQJ75 | A10986 | 2+ 1/2
Q10876 | AKJ95 1+1/2 | KJ765 | AQ1098 2 KQJ76 | A10985 | 2+1/2
Q10965 | AKJ87 |1+1/2|KJ865 | AQ1097 2 KQJ85 | A10976 | 2+ 3/4
Q10975 | AKJ86 1+3/4 | KJ875 | AQ1096 2 KQJ86 | A10975 | 2+ 3/4
Q10976 | AKJ85 1+3/4 | KJ876 | AQ1095 2 KQJ87 | A10965 | 2+ 7/8
Q10985 | AKJ76 1+3/4| KJ965 | AQ1087 2 KQJ95 | A10876 3
Q10986 | AKJ75 1+7/8 | KJ975 | AQ1086 2 KQJ96 | A10875 3
Q10987 | AKJ65 2—¢e3 | KJ976 | AQ1085 2 KQJ97 | A10865 3
QJ765 | AK1098 |1+ 1/2 | KJ985 | AQ1076 2 KQJ98 | A10765 3
QJ865 | AK1097 |1+ 1/2 | KJ986 | AQ1075 2 KQJ105 | A9876 |3+ 1/16
QJ875 | AK1096 |1+ 3/4 | KJ987 | AQ1065 2 KQJ106 | A9875 | 3+1/8
QJ876 | AK1095 |1+ 3/4 | KJ1065 | AQ987 2 KQJ107 | A9865 | 3+1/4
QJ965 | AK1087 2 KJ1075 | AQ986 2 KQJ108 | A9765 | 3+1/2
QJ975 | AK1086 2 KJ1076 | AQ985 2 KQJ109 | A8765 4—g

TABLE 3. Values of five-card deals.




