HILBERT SERIES OF INVARIANT ALGEBRAS FOR
CLASSICAL WEYL GROUPS

RICCARDO BIAGIOLI AND FABRIZIO CASELLI

ABSTRACT. We introduce several new Mahonian statistics on the classical
Weyl groups of type B and D and use them to study the invariant algebras of
two natural actions of these groups on the ring of polynomials.

RESUME. On introduit des nouvelles statistiques de MacMahon sur les groupes
de Weyl classiques et on les utilise pour étudier les algebres invariantes de deux
actions naturelles de ces groupes sur I’anneau des polynomes.

1. INTRODUCTION

Let W be a classical Weyl group, i.e. W is either the symmetric group A,_1,
the hyperoctahedral group B,,, or the even-signed permutation group D,,. Consider
the natural diagonal and tensor actions of W and W, respectively, on the polyno-
mial ring C[z1,...,7,]®® and denote by DIA and TIA the corresponding invariant
algebras. Let Zw (g) be the quotient of the Hilbert series of DIA and TIA.

A well known result due to MacMahon [17] asserts that the major index is
equidistributed with the length function on the symmetric group. The Euler-
Mahonian distribution of descent number and major index was extensively studied
(see e.g. [8, 11, 12]) and its generating function is known as Carlitz’s identity. Al-
though its nature is combinatorial, the major index has also important algebraic
properties. It is known that, if W = A,,_1, then Z4,__,(g) is a polynomial with
non-negative integer coefficients, which admits an explicit simple formula in terms
of the major index [13]. Moreover, Garsia and Stanton provide a descent basis for
the coinvariant algebra of type A whose elements are monomials of degree uqual
to the major index of the indexing permutation [14]. The problem of generalizing
these results to the hyperoctahedral group has been open for many years. Several
authors have defined analogues of the major index for B, (see, e.g., [9, 18, 19]) but
none of these is Mahonian, (i.e. equidistributed with length). Finally in a recent
paper [1] Adin and Roichman introduced the flag-major index (fmaj) on the hy-
peroctahedral group. They show that it is Mahonian and find a formula for Zg_ ()
by means of this new statistic. In [2] the previous two authors and Brenti give a
generalization to B, of Carlitz’s identity. The flag-major index has been further
studied in [3]; it plays a crucial role in representation theory, more precisely in the
decomposition of the coinvariant algebra into irreducible modules. In [4] the first
of the present authors defines the D-flag major index (fmajp) for the even-signed
permutation group, and proves that it is Mahonian. Moreover, he defines a pair of
Euler-Mahonian statistics that allows a generalization of Carlitz’s identity to D,,.
Neither similar formula for Zp_ (g) nor other algebraic properties have been found
so far.

The purpose of this work is to introduce a new “major” statistic on D,, from
which one can generalize all the combinatorial and algebraic properties known for
type A and B. In particular we would like to find an explicit formula for Zp_(g) us-
ing this new statistic. Toward this end, we define two new Mahonian statistics nedp
and Dmaj. The latter Dmayj, defined in a combinatorial way, has the analogous
algebraic meaning for D,,, as the major index for S,,, and fmaj for B,; namely, it
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allows us to find an explicit formula for Zp_(§) which implies, in particular, that
this series (as in types A and B) is actually a polynomial with non-negative inte-
ger coefficients. To prove the results we introduce suitable even and odd t-partite
partitions. These are related with the t-partite partitions introduced by Gordon
in [15], and further studied by Garsia and Gessel in [13] where applications to the
permutation enumerations are shown. Using similar ideas, we define the Mahonian
statistic nedg on B, that allows a new and simpler proof of the Adin-Roichman
formula for Zp, (q) (see, [5]). Finally, we define a new descent number Ddes on D,
so that the pair (Ddes, Dmaj) gives a generalization to D,, of Carlitz’s identity. In
a upcoming paper [6] we show that Dmaj and Ddes play an important role in the
decomposition in irreducible submodules of the coinvariant algebra of type D.

The organization of this extended abstract is as follows. In §2 we introduce some
preliminaries and notation. In particular we present some combinatorial properties
of classical Weyl groups, we define their actions on the polynomial rings, and we
give some results on t-partite partitions. In §3 we define several new combinatorial
tools that are needed in the rest of our work and we state some of their fundamental
properties: we introduce the concept of parity of a partition and the new statistics
nedp, nedp and Dmaj. In §4 we collect some combinatorial properties of Dmaj.
We show that it’s equidistributed with length and that, together with Ddes, satisfies
the Carlitz’s identity for D,,. §5 is devoted to our main result, i.e. we find an explicit
formula for the polynomial Zp, () using Dmayj.

2. NOTATION, DEFINITIONS AND PRELIMINARIES

2.1. Classical Weyl Groups. In this section we give some definitions, notation
and results that will be used in the rest of this work. We let P := {1,2,3, ...},
N := P U {0}, Z be the ring of integers and C be the field of complex numbers;
for a € N we let [a] := {1,2,...,a} (where [0] := 0). Given a,b € N we let
[a,b) == {i € N : min(a,b) < i< maz(a,b)} and similarly for n,m € Z , n < m,
[n,m] :={n,n+1,...,m}. Given n,m € Z, by n = m we mean n = m (mod 2).
For a set A we denote its cardinality by |A| and the set of all its subsets by 24. If
A C [n] its complementary set [n] \ A will be denoted by C,,(A). Given two sets A
and B we denote by AAB their symmetric difference (AU B) \ (4N B).

We always consider the linear order on Z

“1<-2<---<-n=<-<0<1=<2<---<n<---

instead of the usual ordering. Given a sequence o = (01,...,0,) € Z" we let
Neg(o) := {i € [n] : 0; < 0} and neg(c) := |[Neg(c)|. We say that (i,5) € [n] x [n]
is an inversion of o if i < j and 0; > 0; and that i € [n — 1] is a descent of o if
0; > 0i+1. We denote by Inv(c) and Des(o) the set of inversions and the set of
descents of o and by inv(co) and des(o) their cardinalities, respectively. We also let

maj(c) = Z i

i€Des(o)

and call it the major indez of o.

Given a set A we let S(A) be the set of all bijections 7 : A — A, and S,, := S([n]).
If o € S, then we write 0 = o1 ...0, to mean that (i) = oy, for i = 1,...,n.
Given 0,7 € S, we let o7 := o o T (composition of functions) so that, for example,
1423 - 2134 = 4123.
Given a variable ¢ and a commutative ring R we denote by R[q] (respectively, R[[q]])
the ring of polynomials (respectively, formal power series) in ¢ with coefficients in
R. For i € N we let, as customary, [i],:=14+¢+¢*+... + ¢ (so [0], = 0).
For n € P we let

An(tiq) = ) t0e)gmai(®),
oES,



and Ag(t,q) := 1. For example, A3(t,q) = 1 + 2tq> + 2tq + t2¢®. The following
result is due to Carlitz, and we refer the reader to [8] for its proof, (see also [3] for
a refinement).

Theorem 1. Let n € P. Then

ngr __ An(t,q)
;[r +10" = Tl = i)

in Z[g][[t]]-

Let B, be the group of all bijections 3 of the set [—n,n] \ {0} onto itself such
that

B(=i) = =pB(i)

for all ¢ € [-n,n]\ {0}, with composition as the group operation. If g € B,, then,
following [7], we write 8 = [f1,. .., Bn] to mean that 8(i) = f;,fori =1,...,n, and
call this the window notation of 3. Because of this notation the group B, is often
called the group of all signed permutations on [n] or the hyperoctahedral group of
rank n.
We find it convenient to introduce this pair notation: for each o € S, and H C [n],
we let (0, H) := [p1,- .., n] be the signed permutation defined as follows:

g.= | —ow Hi€H,
e Ti, ifigH.

Note that in this notation we have

(1) (0, H)™' = (07", 0(H))
and
(2) (0,H)(1,K) = (o, KAT ' (H))

For example, if (o, H) = (43512, {1,2,5}) = [-4,—-3,5,1,—2] € Bs then (0, H)™ ! =
(45213, {2,3,4}) = [4, -5, —2, —1, 3] and if (r, K) = (21345, {2, 5}) then (¢ H)(r, K) =
(34512, {1}).

Following [1] and [2] we define the flag-major indez of B € B, by

3) fmaj(B) := 2maj(B) + neg(B)
and the flag descent number of 8 by
(4) fdes(B) := 2des(B) + n(B),
where
1, ifp() <o,
n(B) = { 0, otherwise.

For example, if 8 = [-4,-3,5,1,—2] € By then fmaj(8) = 2-8+ 3 = 19 and
fdes(B)=2-3+1=71.

It’s known that fmaj is equidistributed with length on B,,, (see [1] where fmaj is
denoted flag — major).

The pair of statistics (fdes, fmaj) gives a generalization of Carlitz’s identity (The-
orem 1) to B,. More precisely we have the following theorem due to Adin, Brenti
and Roichman [2] (see also [3] for a refinement).

Theorem 2. Let n € P. Then
S sep, taes(B)gimai(®)

2l = T A= e

>0

in Z[g][[]]-



We denote by D,, the subgroup of B,, consisting of all the signed permutations
having an even number of negative entries in their window notation, more precisely

D,, :={v € B,, : neg(y) = 0}.

As for B,, we introduce a pair notation: for each o € S,, and K C [n — 1] we let
(0,K)p :==[m,---,7n] be the unique even-signed permutation -y such that |y;| = o;
for all i € [n] and K U {n} D Neg(y) 2 K. More precisely

—0;, ifie K,
yi=1 o, ifi ¢ K U{n},
(-1)Elg,, ifi=n.
For example (54312,{1,3,4})p = [-5,4,—-3,—1,—2] € D5. We will usually omit
the index D in the pair notation of D,, when there is no risk of confusion with the
pair notation of B,.
Following [4], for every v € D,, we define the D-negative multiset

DDes(y) := Des(7) [H{—(i) =1 : i € Neg(y)}\ {0},

ddes(y) := |DDes(v)|
and

dmaj(y) = Z i.

i€DDes(y)

For example, if v = [-5,4, -3, —1,—2] € D5 then DDes(y) = {1,2%,3,4}, ddes(vy) =
5 and dmaj(y) = 12.
The pair of statistics (ddes, dmaj) gives a generalization of Carlitz’s identity to D,,.
More precisely, we have the following theorem, (see [4]).

Theorem 3. Let n € P. Then
Z’yED gddes(7) gdmaj(v)

LI+t = (1 —8)(1 —tq™) [Ti5, (1 — t2¢%)

nZlql]).

2.2. Group Actions on Polynomial Rings. Let W be a classical Weyl group,
ie W = 8,,B, or D,. There is a natural action of W on the polynomial ring
P, :=Clz1,...,zy], ¢ : W — Aut(P,,) defined on the generators by

w(i)

o(w) : z; me(i)p

for all w € W and extended uniquely to an algebra homomorphism. This action
gives rise to two actions on the tensor power P® := P, ® --- ® P,, ( t-times): the
natural tensor action @1 of Wt := W x --- x W (t-times), and the diagonal action
of W on P®* pp := ¢r od defined using the diagonal embedding d : W — W1,
w - (w,...,w).

The tensor invariant algebra

TIA := {p € P® : pr(w)p =5 forall w € W'}
is a subalgebra of the diagonal invariant algebra
DIA := {p € P® : pp(w)p=p forallw € W}.

These two algebras are naturally multigraded and hence we can consider the cor-
responding Hilbert series

Fp(g):= Y, dimc(DIAn,,. )¢ - af,

M1 yeeeyNt



Pr(q):= Y dimc(TIAn,, n )¢ - g,
TULyeey Tt
where DIA,,, ., and TTIA, .. are the homogeneous components of multi-degree
(n1,-..,n¢) in DIA and TIA respectively and § = (q1,---,q)-
We denote the quotient series by

Fp(q)
Fr(q)

Zw(q) := € Z[[q]].
2.3. t-Partite Partitions. In this section we recall the language of ¢-partite par-
titions which was originally defined by Gordon [15] as well as some results of Garsia
and Gessel [13] that we use in the rest of this work.

Let F,, be the set of all functions f : [n] > N. For f € F, we let

|f| = Zf(z‘),

and we denote F, ; := (). Moreover, for f = (f1,..., fi) € Fnu, we define
t
oi(f) =3 Fih),
i—1

and we let F , := {f € Fny = a;(f) =0 forall j € [n]} and Fy , :={f € Fny :
a;j(f) =1 forall j € [n]}.
A t-partite partition with n parts is a sequence f = (f1,...,ft) € Fut »

A /G - filn)
LA) f(2) ... faln)

1) £i(2) ... filn)
satisfying the following condition:
for i, € [t] and j € [n], if f,(]) = f,(] + 1) for all i < ig, then flo(J) > f’io(j + 1)
Note, in particular, that for ¢9 = 1 this implies that

i) > f1(2) > ... > fi(n) >0,

so fi1 is a partition with at most n parts.
We denote the set of all the ¢-partite partitions with n parts by By ;. In particular,
Bn,1 is the set of all integer partitions with at most n parts.
For example, if n = 5 and ¢ = 2, then f = (f1, f2) with f1 = (4,4,4,3,3) and
f2=1(3,3,2,5,4) is a bipartite partition with 5 parts.

Given a permutation o = o1 - - - 0, we say that the partition A = (Ay,..., A,) is
o-compatible if, for all i € [n — 1],

' . ' . 1, if oy > 0441,
(5) Ai = Aip1 > €i(0) == { 0, otherwise.

We also set £,(0) := 0. Clearly, a partition A is o-compatible if and only if it is of
the form

Ai =pi+Pig1+ -+ Pn
with p; > €;(0) for all i. We let P (o) be the set of all o-compatible partitions.
For example, if o = 15342 then \ = (6,6,4,4,3) € P(0).
The following theorems are due to Garsia and Gessel (see [13, Theorems 2.1 and
2.2 and Remark 2.2]).

Theorem 4. There exists a bijection between By, ;+ and the set P, ¢ of the 2t-tuples
(01,00, A AWD)



where o; € Sp, MY € P(o;) for all i € [t] and o1---0201 = e. This bijection is
given by

§ o8
A A
o1, 00, AD, . AD) 1= 7 7 7
o ® ®)
/\Ut_l---tn(l) gp—1-01(2) T /\Ut—l"'ﬁ(n)
We let

B, ={f €Bnt : aj(f) =0 forallj € [n]}

and

By, ={f €Bnt : aj(f) =1 forallj € [n]}
the sets of all the even and odd t-partite partitions with n parts, respectively.
Moreover we let Py, , the set

{01, 0, XD, Ay e Py AP AD 42 o =0 foralli€ [n]}

Tro1a1(

and similarly Py, ,

{1,000, AD, . AD) € Py o ADAE 4 o =1 forallie [n]}.

Tro1a1(

It’s clear that, by restriction, the map 2 of Theorem 4 gives rise to two bijections
nt © Pnyand By < Pp .

Theorem 5. Let W = S,, and t € N. Then

t
zs,@= Y [[a"“,

O1,...,0t =1
where the sum is over all t-tuples (o1,...,0¢) of permutations in S, such that
O¢0¢_1---01 = €.
The following is the corresponding result of Theorem 5 for B, and it is due to
Adin and Roichman [1].

Theorem 6. Let n,t € N. Then

t
zp. @ =Y [L[d™“,

B1se.e,Be i=1
where the sum is over all the signed permutation f1,...,0: € By, such that By --- 51 =
e.

3. NEW STATISTICS ON B,, AND D,

3.1. Bijections and Parity Sets. We define a bijection ¢, : 2l — 2[71 for every
n € N, in the following inductive way: for n > 1,

Crnpn—1(H), if HC[n—1],
oot ={ SOy, ek )
and o (0) := 0.
For example, let n = 4 and H = {2}, then,
ea({2}) = Caps({2}) = CaCs2({2}) = CaC3¢1(0) = CaC5Cr00(0)
CaC3({1}) = Ca({2,3}) = {1,4}.
Our goal is to understand the action of a permutation o on ¢, (H). For this it’s

useful to introduce the following concept. Let A = (A1, A2,...,A,0,0,...) € By1.
We define the parity set of A to be

H(/\) = {’L S [’I’L] TN — /\’H-l = 0}



Let 0 € Sy, and H C [n]. Let A € By, 1 be such that H = H(A). Then we define
H? := H(p),

where p is any partition in By, ; such that A; + p;) = 0 for all ¢ € [n]. Note that
the definition of H? doesn’t depend on A and p but only on H and o.
Observe that the following statements are equivalent:
i) (H(X)? = H(p);
ii) X\i + fo(s) =0foralli € [n].
For example, suppose n = 4 and 0 = 4312. Let \; = p; +--- + p, and pu; =
ri + -+ 1y, for i = 1,...,n. The condition A; + sy = 0 forall i € [n] is
equivalent to the following system of congruences:
PL+P2+P3+PL=Ty
P2 +P3+Pps=T3+T4
P3+pPs=r1i+r2t+r3+ry
P4 =T2+ T3+ T4

If H = {1,3} is the parity set of A then p;,ps are even, and ps,ps are odd. All
these conditions force r3,r4 to be even and rq,r2 to be odd, hence H? = {3,4}.
The following is the main technical result of this section.

Lemma 1. Let n € N. Then for all H C [n] and o € S,, we have
opn(H) = on(H?).
Note that Lemma 1 implies that (o, H) — H€ is a left action of S, on 2™,

Let p : 2[" — 2[=1 be the following projection of sets

H, ifnd¢H,
He { Co(H), ifneH

Let o € Sp, H C [n] and X € B, 1 be such that H(\) = H. We define
H := H(p)
where p € By,1 is such that A; + pi(;) = 1 for all i € [n].
Lemma 2. Let 0 € Sy, and H C [n]. Then
He = H°A{n} = (HA{n})".
Lemma 3. Let 0 € S, and K C [n—1]. Then
pn-1 (K7 \{n}) =p(opn-1(K)).

3.2. Generalization to the Multivariable Case. In this section we generalize
the definitions and results given in §3.1 to the multivariable case.
Let n,t € N,o1,...,01 € Sy, and Hy,...,H; C [n]. Let A\, ... )XY € B, ; be
such that the parity set H(A®)) = H; for all i € [t]. Then we define

(H1: R Ht)(a'hm’a't) = H(,U,),
where the partition u € By is such that for all j € [n], )\g-l) + )\521)(9.) + o+
T Hoyo1() = 0. Note that, as for the one-dimensional case, the defi-

nition of (Hy,. .., H;){“1%) doesn’t depend on the A(¥’s and p but only on the
H;’s and o;’s.
Observe that the following conditions are equivalent:

D) (HAW),..., HAD)) 100 = H(p);

i) A+ AZ A T Heven) =0
The following two technical lemmas are needed to prove the main result (Theorem
18).



Lemma 4. Let n,t € N, 0; € S, and H; C [n] for all i € [t]. Then
(Hy,y. .., Hy) ore0t) = CHHL (T AHT 2 N - AHPY).

The next result says that the bijection ¢, is “almost” distributive with respect
to the symmetric difference of sets.

Lemma 5. Let n € N. Then for all Hy,...,Hy C [n] we have:
On(H1)A - Dpp(Hy) = onCEMY (HLA -+ - AHY).
The following is the generalization of Lemma 1.

Corollary 7. Let n € N. Then for oll Hy,--- ,H; € [n] and 01,...,0¢ € Sy, we
have

o1+ 0100 (H1) Aoy - - 03pn (Ha) A - - Doypn (Hy) = ¢n ((H1, 3 _7Ht)(ol,...,at)) '

Let 01,...,0¢ € Sy and Hy,..., Hy C [n]. Moreover, let AL e Bn,1 be
such that H(A(®) = H; for all i € [n]. Then we define

(T 0 = Hp)

where p € By, 1 is such that )\5-1) + Agzl)(j) +- 4+ )\((:t)_l._al () T Boro1(h) = 1 for all
J € [n].
The following two results are natural generalizations of Lemmas 2 and 3.
Lemma 6. Let 01,...,0¢ € S, and Hy,...,Hy C[n]. Then for all i € [t] we have:
(Hy, ..., Hy)(oveo) = (Hy,.. ‘,Ht)(o'lq...,o't)A{n}
= (Hl, ey H,'_l, HzA{’I’L}, Hi+17 ey Ht)(gl""’at).
Lemma 7. Let 0y,...,00-1 € S, and Ky,...,K; 1 C[n—1]. Then
On-1((K1,-- ., K1) 7=\ {n}) = 7 (011 01001 (K1) A Aoy 10 1(Ky 1)) -

3.3. The Statistics ned and Dmaj. In this section we introduce the fundamental
statistics ned and Dmaj and study some of their basic properties. For every 8 € B,
we define 8 € B,,_; by deleting the last entry of 8 and scaling the others as follows

B(), if [B(0)] < |B(n)],

Bli):=q B@) -1, if B(i) > 0and |B(i)| > |B(n);
B +1, if B(i) <0and |B(i)] > [B(n)]
For example, if 8 = [—4,—3,5,1,—2] € Bs then § = [-3,-2,4,1].

We let B the set of the signed permutations 3 € B, such that 8(n) > 0.

Lemma 8. Let 8 € B}. Then
maj(—B) = maj(B) + neg(B),
where —f :=[-B(1),...,—B(n)].
Corollary 8. Let 3 € BY. Then
fmaj(=B) = fmaj(B) +n.

Recall the definitions of ¢;(0) given in (5) and of ¢, given in §3.1. We are ready
to introduce two new fundamental statistics for this work.

Definition. For (o, H) € B,, we let

(6) nedp(o, H) := Y _ 2ie;(0) + »_ .

i€H i€Cy (H)

For (o, K)p € D,, we let

) nedp (o, K) := Z 2igi(0) + Z i

icK 1€CH_1(K)



For example, if 8 = [-2,4, -3, 1] = (2431,{1, 3,4}) € B, then nedp(p) = 2-3+
2=8andif y=[2,4,-3,—1] = (2431,{3}) € D4 then nedp(y) =2-3+1+2=09.
The main property of nedp is the following one.

Theorem 9. For every (o,H) € B,
(8) nedp(o, H) = fmaj(o, on(H)).
Corollary 10. Let n € P. Then
Y gredn®) = 3 gfmei(s),
BEBy BEB,

The following statistic is fundamental for this work and its definition is naturally
suggested by Theorem 9. We will see in §4 and in §5 that it’s Mahonian and,
moreover, that it plays the same algebraic role for D,,, as maj for S, and fmaj
for B, in the Hilbert series of DIA and TIA defined in §2.

Let v € D,,, we define

Dmaj(v) := fmaj([n,- .-, -1, |7nl])-

For example, if v = [-2,3,—1, =5, —4], then Dmaj(y) = fmaj([-2,3,-1,-5,4]) =
2-2+ 3 ="7T. Note that Dmaj((c,K)p) = fmaj((c, K)).
The next result follows immediately from Theorem 9.

Corollary 11. Let (0,K) € D,,, then
nedp(o, K) = Dmaj(o, pn—1(K)).

4. COMBINATORIAL PROPERTIES OF Dmaj

In this section we show that the Dmaj satisfies the fundamental combinatorial
properties of a candidate for a major index for D,,. In fact, one can show through
an explicit bijection that the D-major index is equidistributed with the Mahonian
statistic D-flag major index fmajp defined in [4]. This fact clearly implies the
following proposition.

Proposition 12. Let n € P. Then
Z gPmai(n) = Z gt
YED, YED,

For v € D,, we define the D-descent number by

Ddes(v) == fdes([71,---Yn—1,|7al])-

For example, if v = [-2,—1,4,5, —6, —3] € Dg then Ddes(y) = fdes([-2,-1,4,5,—6,3]) =
2-2+1=5.

The pair of statistics Dmaj and Ddes satisfy a generalization of Carlitz’s identity.
Theorem 13. Letn € P. Then

ZweD Ddes(v) gDmaj(v)

2 = = e T = o)

>0 i=1

in Z[g][[]].

5. THE MAIN RESULTS

In this section we use the combinatorial tools developed in §3 to find a closed
formula for Zp, (7) in terms of the statistic Dmaj.



5.1. A Basis for TIA and DIA for D,. Let W = D,,. The tensor invariant
algebra TIA is (PD»)®t and PP~ is freely generated (as an algebra) by the n — 1
elementary symmetric functions e;(z?,...,22) for j € [n — 1] and the monomial

x1--- Ty (see, e.g., [16, §3]). Hence

N t 1 n—1 1
Fr(g) —il;[l ((1_%@) Jl;[l (l_q?j)).

A linear basis for P®? consists of all tensor monomials

7= ® ﬁxfz(J)
i=1 j=1 !

where f = (f1,.-., fi) € Fns- The canonical projection 7 : P®* — DIA is defined
by

®) = Y ¢p(7)®)

YEDx
so that
DIA =< {n(z7): f€ Fus}>.
Lemma 9. For f € F 4,
m(@l) # 0 f € Fi,UFS,,
where Fy , and Fp , are defined in §2.3.

Clearly B}, , U B} ; is a complete system of representatives for the orbits of all
[ € F UF, 4, under the action of the symmetric group. Hence we have

Proposition 14. The set

{r(@'): feB:,UBS,}
is a homogeneous basis for DIA.
Corollary 15. The Hilbert series for DIA is

FD(@): Z q‘1f1|‘__q)|5ft|.
feB;, UBg .

5.2. The Polynomial Zp_(q1,q2). We define an involution « : D,, — D,, by

9) (0,K) = (o', p(o(K))),
where p is the projection defined in §3.1.
For example, «(4213,{1,3}) = (3241, p({1,4}) = (3241, {2, 3}).
We are now ready to state the following
Theorem 16. Let n € N. Then
Zp (q1,q2) = Z quaj(v)quaj(a(’ﬁ)_

YED~
Example. Consider the case n = 2. One may easily check that a(y) = v for all
v € D5 and hence
Zp,(@,32) = (@@2)P™ 0 4 (q1g2) PR 4 (g1gp) P ("1 4 (qrgo)Pmai (=27

= (1+aqe)

We denote by ¢ the inversion in D,, so that ¢(y) := v~ 1. The next lemma says that
it is possible to “substitute” a with ¢ in Theorem 16.

Lemma 10. « and ¢ are conjugate in S(Dy,).



Corollary 17. There exists a function M : D, — N, equidistributed with length,

such that
(a1, ¢2) Z qM(’Y) My~
yED,

5.3. The Polynomial Zp (7). In this section we provide an explicit simple for-
mula for the polynomial Zp_(g) in terms of the Dmaj.
We denote by o : D:=1 — D,, the map

(01, K1), .5 (001, Ki—1)) = ((o4—1++-01) " p(op—1 - o1 (K1) A -+ Aoy_1 (Ky—1))) -
For example,
a ((4231,{1,3}), (2143, {3}))

(2413, p(3142({1, 3}) A2143({3}))

— (2413, p({3})) = (2413, {3}).
Note that this is consistent with the definition of a given in (9).
Theorem 18. Let n € N. Then

o= X [

ViseenyYt 4=1

where the sum runs through all vy1,...,v € Dy such that v = a(v1,.. -, Y1)

5.4. The case n odd. If n is odd the formula appearing in Theorem 18 can be
slightly improved. In particular we define one more statistic, Dmaj°, that allows
us to obtain a formula for Zp, (g) similar to the corresponding ones for S, and B,
appearing in Theorem 5 and Theorem 6. Consider the set S, x 2["~1 with the
binary operation
(0,H)x (1,K) := (aT,p(KAT_l(H))) .

Proposition 19. Let n > 1. Then A, = (Sn X 2[”*1],*) is a group and it is
isomorphic to D,, if and only if n is odd.

Let n € N be odd. Then we let

Dmaj® := Dmajo ¥,

where we identify A, with D,, through the pair notation and & : D, — A, is
defined by

v = (Ivlp(Neg(v))) -
Corollary 20. Let n € N. Then

ZD2n+1 Z HquaJ (%

Y1ye-5Yt =1
where the sum is over all v1,...,7v € Dapy1 such that v¢---v1 =e.

Proposition 19 implies that, if n is even, there is no ® € S(D,) such that
a(®(1),...,®(72)) = ®(y---y1)~ ! that would imply the corresponding result of
Corollary 20. Nevertheless, we know that this result holds for ¢ = 2 (Corollary 17)
but we haven’t been able to define a nice statistic, Dmaj€, that works in this case,
or to understand if it exists for ¢ > 2. We therefore propose the following
Problem. Let n € N be even. Is there a statistic Dmaj® : D,, - N, necessarily
equidistributed with length on D,,, such that

Z H Dmaj®(vi)

Y1seeyYt =1
with vy =e?
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