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From verification to synthesis

Reactive systems

Environment System

Input

Output

Interaction  i1o1i2o2i3o3 · · · ∈ (IO)ω or (IO)∗

Verification
Check that a system satisfies
a specification

System ‖ Env |= Specification

Synthesis
Generate a system from
a specification

? ‖ Env |= Specification
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Synthesis

? ‖ Environment |= Specification

: Generate a system from a specification

Implementing a specification
Input words I ∗ Output words O∗

Implementation M : I ∗ → O∗ Specification S ⊆ I ∗ × O∗

M fulfils S, written M |= S , if for all in ∈ I ∗, (in,M(in)) ∈ S

I ∗

O∗

M

S
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The realisability and synthesis problem

S = Class of specifications
S ⊆ I ∗ × O∗

M = Class of target implementations
M : I ∗ → O∗

Synthesis problem from S to M

Input: Specification S ∈ S
Output: • Implementation M ∈M

s.t. M |= S if it exists
• No otherwise

Realisability problem from S to M
: Corresponding decision problem
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Finite transducers: automata with outputs

1 2 3
a|a a|a

b|a b|a a,b|a

Replace every letter with an a when there are at least two a’s

4 5
b|b

a|b a,b|b

Replace every letter with a b when there is at least one b

Sequential transducer
The transition and output letter are determined by the input letter
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Multi-sequential transducers

1 2 3

4 5

D1

D2

a|a a|a

b|a b|a a,b|a

b|b

a|b a,b|b

Running example

Multi-sequential transducer
Union of sequential transducers

T =
k⊎

i=1

Di

Multi-sequentiality
A relation is multi-sequential if it can be defined by a
multi-sequential transducer

• Decidable for functions [?]
• Membership in PTime [?]
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Transducer realisability problem
Known results

M = sequential transducers

S Complexity
MSO Nonelementary [?]
LTL 2-ExpTime-c [?]
Finite Transducers ExpTime-c

Question: Class of transducers with better complexity?
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Realisability of multi-sequential specifications

S = Multi-seq. transducers
Unions of sequential transducers
T = ]ki=1Di

M = Seq. transducers
Output letter and transition is
determined by input letter

1 2 3

4 5

D1

D2

a|a a|a

b|a b|a a,b|a

b|b

a|b a,b|b

Theorem
Sequential transducer synthesis from multi-sequential
specifications is PSpace-complete.
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Realisability of multi-sequential specifications
Proof

1 2 3

4 5

D1

D2

a|a a|a

b|a b|a a,b|a

b|b

a|b a,b|b

: On input a, need to drop one
transducer

Critical prefix u

At least two runs on u disagree
on their output

Residual property

For all critical prefix u, there exists P ( {D1, . . . ,Dk} s.t.:

1. All transducers in P produce the same output on u

2. The domain is still covered: u−1dom(T ) =
⋃
i∈P

u−1dom(Di )

3. The residual specification u−1

t⊎
i∈P
Di

|

is realisable
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Realisability of multi-sequential specifications
Proof

Theorem
Sequential transducer realisability from multi-sequential
specifications is PSpace-complete.

Easiness
The residual property can be checked in PSpace.

Hardness
 Emptiness problem of the intersection of n DFAs

S : w#σ 7→ wσ# if ∃i ,w ∈ L(Ai ) (σ ∈ {a, b})
w#σ 7→ w#σ if ∃i ,w /∈ L(Ai )

idAi F 3σ 4σ ∈ Ai12/∈ Ai

#|σ
σ|#

#|#a|a
b|b

2-sequential transducer for one Ai
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Asynchronicity

1 2 3

4 5

a|a a|a

b|a b|a a,b|a

b|b

a|b a,b|b

Our running example

Waiting two steps allows to
determine whether:

• There is at least one b

• There are at least two a’s

Asynchronous transducer
At every transition, reads a
letter, outputs a (possibly
empty) word.

5

8

6 7

b|b

a,b|b

a|ε
a|aa

b|bb a,b|a

An asynchronous implementation
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Asynchronous transducer realisability problem
Known results

M = Unambiguous functional transducers
Feasible for any asynchronous specification [?]

M = Sequential transducers

S (async. transducers) Complexity
Nondeterministic Undecidable [?]
Finite-valued 3-ExpTime [?]
Multi-sequential PSpace-c
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Asynchronous transducer realisability problem
Proof

1 2 3 4

5 6 7 8

a|a

a|a

b|ε a|a

a|ε

a|a

b|a b|b

Delay

del(u1, u2) = (`−1u1, `
−1u2)

` = u1 ∧ u2

del(a, ε) = (a, ε)

6=

del(aa, a) = (a, ε)

Critical loop

Triple (u, v ,X ) s.t.:

1. For all Di ∈ X , pi qi
u|αi

v|βi

2. For all Di /∈ X , no run on u

3. For two transducers Di ,Dj ∈ X , delays accumulate:
del(αi , αj) 6= del(αiβi , αjβj)
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Asynchronous transducer realisability problem
Proof

Recursive characterisation

T = ]ki=1Di is realisable iff for all critical loops (u, v ,X ), there
exists Y ( X s.t.:

1. Delays do not accumulate:
∀Di ,Dj ∈ Y , del(αi , αj) = del(αiβi , αjβj)

2. The domain is still covered: u−1dom(T ) =
⋃
i∈P

u−1dom(Di )

3. The residual specification (u, `)−1

t⊎
i∈Y
Di

|

is realisable

` longest common prefix of the αi ’s

: Can be easily checked in ExpTime
13



Asynchronous transducer realisability problem
Proof

Theorem
Asynchronous sequential transducer synthesis from
multi-sequential specifications is PSpace-complete.

PSpace-easiness: a non-recursive characterisation

Witness of non-satisfaction

• Unfolding of the recursive characterisation

• Reformulation of delay difference

: Can be found in PSpace

PSpace-hardness
: Similar to the synchronous case
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Conclusion

Multi-sequential specifications

• Membership decidable in PTime

• Sequential realisability is PSpace-c both in synchronous and
asynchronous cases

: Improvement of the general case:
• synchronous = ExpTime-c
• asynchronous = undecidable

Synthesis game

: Practical synthesis algorithm

• Suitable for any type of specification defined by transducers
(might not terminate)

15



The synthesis game

a

b
b

a a
b

b b

a

a

1 : ε

4 : ε

2 : a

4 : b

1 : a

5 : b

1 : ε

4 : ε

2 : a

4 : b

1 : a

5 : b

a a

b
b

a

b

2 : ∅
4 : ε

3 : ∅
4 : ε

1 : ∅
5 : ε

2 : ∅
5 : ε

3 : ∅
5 : ε

2 : ε

4 : ∅
3 : ε

4 : ∅

1 : ε

5 : ∅
2 : ε

5 : ∅
3 : ε

5 : ∅

a

b b

a a

b b b

a

a
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