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France
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Synthesis

: Derive an implementation from the specification of a behaviour

Example (Nondeterministic Finite Automata)

An NFA A specifies a language, or equivalently a program that

takes as input a word w and outputs 0 or 1.

Nondeterminism does not exist in practice ⇒ how to implement

such program?

• Enumerate all possible runs of A over w and output 1 as soon

as an accepting run is found (0 otherwise).

• There can be (exponentially) many runs ⇒ we can do better

• NFA can always be determinised ⇒ an equivalent DFA is a

program which implements A and is guaranteed to take only a

finite amount of memory.
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Synthesis

: Derive an implementation from the specification of a behaviour

Example (Nondeterministic Finite Transducers)

A transducer is an automaton with outputs. To every input word,

it associates a set of acceptable outputs

⇒ An implementation chooses an acceptable output for each input.

i

σ = a

σ = b

f

a, b | a

a, b | b

a, b | a, b

a, b | a, b

a | a, b

b | a, b

A transducer recognising S = {(uσ, σw) | σ ∈ Σ, u,w ∈ Σ∗, |u| = |w |}
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Synthesis

i

σ = a

σ = b

f

a, b | a

a, b | b

a, b | a, b

a, b | a, b

a | a, b

b | a, b

• The above specification can for instance be implemented by a

program that computes f : uσ 7→ σu

• It cannot be implemented by any deterministic transducer

• Nor by any synchronous program, which outputs a letter as

soon as it reads a letter 3



Synthesis: Nondeterministic ω-Transducers

: Generalisation of transducers to infinite

words, with a parity acceptance condition.

Infinite words do not exist in practice: we are specifying the

behaviour of a non-terminating program in the limit.

0 1

¬req | ¬grt

req | grt

req | ¬grt

∗ | ¬grt

∗ | grt

An ω-transducer specifying that

every request must eventually be

granted

0

¬req | ¬grt

req | grt

A program which immediately

grants any request, represented as a

deterministic transducer 4



What does it mean to be computable

for non-terminating behaviours?

In the classical reactive synthesis setting

• An implementation is a

synchronous program, i.e. a

strategy in the parity game

induced by the transducer.

• As parity games are

positionally determined, we

can restrict to finite-memory

synchronous programs, also

known as deterministic

transducers.
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Synthesis: to sum up

Definition (Real(S, I))

• S: class of specifications

• I: class of implementations Given S ∈ S, decide whether

there exists I ∈ I such that I implements S , i.e. I and S have

same domain and for all x ∈ dom(S), (x , I (x)) ∈ S

• Real(NFA,TM) = Real(NFA,DFA) and is always true

• Real(NFTsyn,TM) is always true, but not

Real(NFTsyn,DFTsyn) (which is decidable)

• Real(ωNTsyn, SP) = Real(ωNTsyn, ωDTsyn) is decidable

and equivalent with finding a winning strategy in a parity

game

6
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What does it mean to be computable

for non-terminating behaviours?

Relax the synchronicity requirement

An implementation is a program which outputs longer and longer

prefixes of an acceptable output as it reads longer and longer

prefixes of the input.

Example (Guessing the last letter of a chunk)

Consider a specification that takes as input an ω-word of the form

u1σ1#u2σ2#u3σ3 . . . and accepts any output of the form

σ1w1#σ2w2#σ3w3 . . .

• It cannot be implemented by a synchronous program

• It can be implemented by a program computing f# : uσ 7→ σu

on each chunk
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What does it mean to be computable

for non-terminating behaviours?

Relax the synchronicity requirement

An implementation is a program which outputs longer and longer

prefixes of an acceptable output as it reads longer and longer

prefixes of the input.

Example (Guessing if the first letter appears again)

To an input σu, associate the output σω if σ occurs in u, and σu

otherwise.

• Such specification is definable by a transducer which initially

guesses whether σ will appear again and checks such property

• It cannot be implemented by any program
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What does it mean to be computable

for non-terminating behaviours?

Relax the synchronicity requirement

An implementation is a program which outputs longer and longer

prefixes of an acceptable output as it reads longer and longer

prefixes of the input.

Asynchronous specifications

We now consider asynchronous transducers:

on reading a letter σ ∈ Σ, a transducer can

output a word w ∈ Σ∗.

p q
σ | w

Theorem ([Holtmann et al., 2012])

Deciding whether a specification defined by a transducer is

realisable by a computable function is undecidable.

7



Computability

A function f : Σω → Σω is computable if

there exists a deterministic Turing machine M

which outputs longer and longer prefixes of the output

when reading longer and longer prefixes of the input

• Three tape deterministic Turing machine

• Read-only one-way input tape

• Two-way working tape

• Write-only one-way output tape

• M(x , k): the output written after having the k first input

letters of x

• Since the output is write-only, M(x , k) is nondecreasing

M computes f if

for all x ∈ dom(f ), M(x , k) converges towards f (x)

8



Continuity

Cantor distance

For u, v ∈ Σω, d(u, v) =

{
0 if u = v

2−‖u∧v‖otherwise

where u ∧ v denotes the longest common prefix ` of u and v

`

u[l ]

v [l ]

6=

. . . u

. . . v

9



Continuity

Continuous function

A function f : Σω → Σω is continuous at x ∈ dom(f ) if:

(a) for all sequences of data words (xn)n∈N converging towards, we

have that (f (xn))n∈N converges to f (x). (where for all i ∈ N,

xi ∈ dom(f )), or equivalently:

(b) ∀i ≥ 0, ∃j ≥ 0,∀y ∈ dom(f ), ‖x ∧ y‖ ≥ j ⇒ ‖f (x)∧ f (y)‖ ≥ i .

Functionality

A specification is functional if any input admits at most one

acceptable output.

• Unless otherwise stated, specifications are now functional.

• Deciding if a transducer T is functional is doable in

polynomial time.

10
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Computability and Continuity

Computability

f : Σω → Σω is computable if there exists a deterministic Turing

machine which outputs longer and longer prefixes of the output

when reading longer and longer prefixes of the input.

Continuity

∀i ≥ 0, ∃j ≥ 0,∀y ∈ dom(f ), ‖x ∧ y‖ ≥ j ⇒ ‖f (x) ∧ f (y)‖ ≥ i

Computability ⇒ Continuity

If f : Σω → Σω is computable, then it is continuous.

→ For i ≥ 0 take j ≥ 0 such that ‖M(x , j)‖ ≥ i .

Since M is deterministic, any input y such that ‖x ∧ y‖ ≥ j

satisfies M(y , j) = M(x , j).

Thus, M(x , j) is a common prefix of f (x) and f (y), so

‖f (x) ∧ f (y)‖ ≥ i .
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Computability and Continuity

Computability

f : Σω → Σω is computable if there exists a deterministic Turing

machine which outputs longer and longer prefixes of the output

when reading longer and longer prefixes of the input.

Continuity

∀i ≥ 0, ∃j ≥ 0,∀y ∈ dom(f ), ‖x ∧ y‖ ≥ j ⇒ ‖f (x) ∧ f (y)‖ ≥ i

Continuity ⇒ Computability [Dave et al., 2019]

Let f : Σω → Σω be a function definable by a nondeterministic

transducer. Then f is continuous iff it is computable.
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Characterising continuity with a pattern

Theorem (Excluded pattern [Dave et al., 2019])

Let T be transducer defining a function fT .

fT is continuous iff T does not have the following pattern:

i0 qf

i0 q

u | u′

u | u′′

v | v ′

v | v ′′

w | w ′′

where mismatch(u′, u′′) ∨ (v ′′ = ε ∧mismatch(u′, u′′w ′′))

12



Our Contribution: extension to the infinite alphabet case

Until now

• Behaviour specified by functional asynchronous transducers

• Computability defined with deterministic Turing machines

Extend to devices computing over (slightly) infinite sets

• Behaviour is defined using register transducers

• Computability is defined by allowing Turing machines to work

over an infinite alphabet 13



Register Transducers

• D is a countably infinite set whose elements can be compared

for equality only

• Equip a transducer with a finite set of registers

• Recognise relations S over data words, i.e.

S ⊆ (Σ×D)× (Σ×D)

1

2 3

4 5

> |
↓ r1,

ε

> | ↓ r1 , ε

r=
1 | ε

r=
1 | r1

r 6=1 | ↓ r2, r2

r 6=1 | r1 > | r1

A register transducer taking as

input dw and outputting w if d

does not appear in w , dω

otherwise (finite labels are

irrelevant and not depicted)

14



Indistinguishability property [Kaminski and Francez, 1994]

As register machines only have k registers, any run over some data

word w can be renamed into a run over some data word w ′ with at

most k + 1 data.

Corollary

Let A be a nondeterministic register automaton with k registers. If

L(A) 6= ∅, then, for any X ⊆ D of size |X | ≥ k + 1

L(A) ∩ (Σ× X )ω 6= ∅.

Theorem (Functionality)

Deciding whether a register transducer T is functional is

PSpace-complete

→ Thanks to the indistinguishability property, we can show that T

is functional if and only if it is functional over (Σ× X )ω, where X

is a finite subset of D of size 2k + 1.

15
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Continuity and computability

For functions defined by register transducers, computability and

continuity again coincide.

Computability ⇒ Continuity is proved as before.

Continuity ⇒ Computability: requires to decide oσ � f̂ (x [: j ])

16



Continuity: extend the pattern characterisation

Theorem (Excluded pattern)

i0, τ0 qf , µ

i0, τ0 q, τ

u | u′

u | u′′

v | v ′

v | v ′′

w | w ′′

where:

mismatch(u′, u′′) ∨
v ′′ = ε ∧mismatch(u′, u′′w ′′)

Moreover, such pattern is present iff it is present for data words

with at most 2k + 1 data.

Corollary

fT is continuous iff it is continuous over (Σ× X )ω.

This yields a PSpace algorithm to decide whether a function fT

defined by a register transducer is computable.
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Conclusion

• For functions defined by register transducers, continuity and

computability coincide, and are decidable

• Such class is moreover closed under composition, and

decidable

• Those problems are decidable in polynomial time for a

subclass of functions, namely those recognised by test-free

register-transducers

Future work

• Can we allow the devices to guess a data and put it in its

registers?

• Extension to the 2-way case

18
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