
Runtime Monitoring for Hennessy-Milner
Logic with Recursion over Systems with Data
Ongoing Work

Léo Exibard
Tuesday, December 6th, 2022

Séminaire du LIGM

Context: Formal Verification

Goal
Ensure that a system behaves correctly

System
• Non-terminating
• Produces execution traces

Correctness
Simple properties ⇝ regular
(or almost)

Model-checking
Given a model of the system S and a property φ,
Check that S complies with φ

Example: Server producing tokens
t

c

t c

s

w

c
The server does not produce the
secret token (s) before closing (c).
⇝ In LTL: (¬s)Uc.

1

Context: Formal Verification

Goal
Ensure that a system behaves correctly

System
• Non-terminating
• Produces execution traces

Correctness
Simple properties ⇝ regular
(or almost)

Model-checking
Given a model of the system S and a property φ,
Check that S complies with φ

Example: Server producing tokens
t

c

t c

s

w

c
The server does not produce the
secret token (s) before closing (c).
⇝ In LTL: (¬s)Uc.

1

Runtime Verification

• We do not have a model of the system
: Check whether the property holds along the execution

Non-terminating
System

a b . . . ∈ Aω

Trace

Monitor

satisfaction violation

Monitor
Processes trace to raise a verdict:

• Satisfaction yes • Violation no

2

Runtime Verification

• We do not have a model of the system
: Check whether the property holds along the execution

Non-terminating
System

a b . . . ∈ Aω

Trace

Monitor

satisfaction violation

Monitor
Processes trace to raise a verdict:

• Satisfaction yes • Violation no

2

Runtime Verification

• We do not have a model of the system
: Check whether the property holds along the execution

Non-terminating
System

a b . . . ∈ Aω

Trace

Monitor

satisfaction violation

Monitor
Processes trace to raise a verdict:

• Satisfaction yes • Violation no

2

Runtime Monitoring

Irrevocability
Once produced, a verdict cannot change

Runtime Monitoring vs Model-checking
• Model-checking: given a model of the system S and a property
φ, check whether S satisfies φ → emptiness of S ∩ Aφ

• Runtime monitoring: given a trace t of the system and a
property φ, check if t satisfies φ → membership of t in Aφ

Questions
• What properties are monitorable (for a given monitor model)?
• How to synthesise monitors from formulas?

3

Example : A Server Producing Tokens

The secret token is not leaked before closing
• Linear-time Temporal Logic (LTL): (¬s)Uc

• Linear-time modal µ-calculus︸ ︷︷ ︸
aka recHML

:

minX.
(
⟨c⟩tt ∨ ([s]ff ∧

∧
a ̸=s

[a]X
)

Server

t t s
violation

t c
satisfaction

4

Example : A Server Producing Tokens

The secret token is not leaked before closing
• Linear-time Temporal Logic (LTL): (¬s)Uc
• Linear-time modal µ-calculus︸ ︷︷ ︸

aka recHML

:

minX.
(
⟨c⟩tt ∨ ([s]ff ∧

∧
a ̸=s

[a]X
)

Server

t t s
violation

t c
satisfaction

4

Example : A Server Producing Tokens

The secret token is not leaked before closing
• Linear-time Temporal Logic (LTL): (¬s)Uc
• Linear-time modal µ-calculus︸ ︷︷ ︸

aka recHML

:

minX.
(
⟨c⟩tt ∨ ([s]ff ∧

∧
a ̸=s

[a]X
)

Server

t t s
violation

t c
satisfaction

4

Example : A Server Producing Tokens

The secret token is not leaked before closing
• Linear-time Temporal Logic (LTL): (¬s)Uc
• Linear-time modal µ-calculus︸ ︷︷ ︸

aka recHML

:

minX.
(
⟨c⟩tt ∨ ([s]ff ∧

∧
a ̸=s

[a]X
)

Server t

t s
violation

t c
satisfaction

4

Example : A Server Producing Tokens

The secret token is not leaked before closing
• Linear-time Temporal Logic (LTL): (¬s)Uc
• Linear-time modal µ-calculus︸ ︷︷ ︸

aka recHML

:

minX.
(
⟨c⟩tt ∨ ([s]ff ∧

∧
a ̸=s

[a]X
)

Server t t

s
violation

t c
satisfaction

4

Example : A Server Producing Tokens

The secret token is not leaked before closing
• Linear-time Temporal Logic (LTL): (¬s)Uc
• Linear-time modal µ-calculus︸ ︷︷ ︸

aka recHML

:

minX.
(
⟨c⟩tt ∨ ([s]ff ∧

∧
a ̸=s

[a]X
)

Server t t s

violation
t c

satisfaction

4

Example : A Server Producing Tokens

The secret token is not leaked before closing
• Linear-time Temporal Logic (LTL): (¬s)Uc
• Linear-time modal µ-calculus︸ ︷︷ ︸

aka recHML

:

minX.
(
⟨c⟩tt ∨ ([s]ff ∧

∧
a ̸=s

[a]X
)

Server t t s
violation

t c
satisfaction

4

Example : A Server Producing Tokens

The secret token is not leaked before closing
• Linear-time Temporal Logic (LTL): (¬s)Uc
• Linear-time modal µ-calculus︸ ︷︷ ︸

aka recHML

:

minX.
(
⟨c⟩tt ∨ ([s]ff ∧

∧
a ̸=s

[a]X
)

Server

t t s
violation

t c
satisfaction

4

Example : A Server Producing Tokens

The secret token is not leaked before closing
• Linear-time Temporal Logic (LTL): (¬s)Uc
• Linear-time modal µ-calculus︸ ︷︷ ︸

aka recHML

:

minX.
(
⟨c⟩tt ∨ ([s]ff ∧

∧
a ̸=s

[a]X
)

Server t

t s
violation

t c
satisfaction

4

Example : A Server Producing Tokens

The secret token is not leaked before closing
• Linear-time Temporal Logic (LTL): (¬s)Uc
• Linear-time modal µ-calculus︸ ︷︷ ︸

aka recHML

:

minX.
(
⟨c⟩tt ∨ ([s]ff ∧

∧
a ̸=s

[a]X
)

Server t

t s
violation

t

c
satisfaction

4

Example : A Server Producing Tokens

The secret token is not leaked before closing
• Linear-time Temporal Logic (LTL): (¬s)Uc
• Linear-time modal µ-calculus︸ ︷︷ ︸

aka recHML

:

minX.
(
⟨c⟩tt ∨ ([s]ff ∧

∧
a ̸=s

[a]X
)

Server t

t s
violation

t c

satisfaction

4

Example : A Server Producing Tokens

The secret token is not leaked before closing
• Linear-time Temporal Logic (LTL): (¬s)Uc
• Linear-time modal µ-calculus︸ ︷︷ ︸

aka recHML

:

minX.
(
⟨c⟩tt ∨ ([s]ff ∧

∧
a ̸=s

[a]X
)

Server t

t s
violation

t c
satisfaction

4

Hennessy-Milner Logic with Recursion

Syntax
φ,ψ ∈ recHML ::= tt | ⟨a⟩φ | φ ∨ ψ | min X.φ | X

| ff | [a]φ | φ ∧ ψ | max X.φ
Recursion: Fixpoints

• min: least fixpoint
• max: greatest fixpoint

Linear Time
Models = traces

• ⟨a⟩φ: a t︸︷︷︸
φ

• [a]φ:
a t︸︷︷︸

φ

at 5

Monitoring recHML

Monitors
m, n ∈ Mon ::= v ∈ Vrd | a.m | m + n | rec X.m | X

v ∈ Vrd ::= end | no | yes

Monitorable Fragments
φ,ψ ∈ sHML ::= tt | ff | [a]φ | φ ∧ ψ | max X.φ | X (violation)
φ,ψ ∈ cHML ::= tt | ff | ⟨a⟩φ | φ ∨ ψ | min X.φ | X (satisfaction)

Monitor Synthesis
• Finite-state monitors suffice
• Compositional (Francalanza, Aceto, and Ingólfsdóttir 2015)
• Monitors can be determinised (Aceto et al. 2020)

6

Systems with Data

Data = elements from an infinite alphabet with some structure.

Data Domains
Infinite set with decidable theory: (N,=), (Q, <), (Σ∗, <prec)

Server providing tokens
• Tokens are now integers
• We only need equality checks

7

Temporal Logics over Systems with Data

Various Logics
• Freeze LTL
• FO2[<,∼]

• etc (see Demri and Quaas 2021)
• Here: recHML with quantifiers (inspired from Groote and

Mateescu 1998)

φ,ψ ∈ recHML ::= tt | ⟨b(⋆)⟩φ | φ ∨ ψ | min X.φ | X(⃗v) | ∃x.φ
| ff | [b(⋆)]φ | φ ∧ ψ | max X.φ | ∀x.φ

b(⋆): quantifier-free FO formula

8

Examples

The first token does not appear again
φfirst̸= = ∀x [⋆ = x] maxX.

(
[⋆ = x]ff ∧ [⋆ ̸= x]X(x)

)
No two consecutive tokens are the same

φsucc̸= = ∀x.[⋆ = x] maxX.
(
∀y.[⋆ = y = x]ff ∧ [⋆ = y ̸= x]X(y)

)

No two tokens are the same

φ∀̸= = maxX.
(
∀x.[⋆ = x]

(
maxY.[⋆ = x]ff∧ [⋆ ̸= x]Y

)
∧ [⋆ ̸= x]X

)

9

Monitoring with Data

Monitors
m, n ∈ Mon ::= v ∈ Vrd | b(⋆).m | guess x.m | m + n | rec X(⃗v).m | X(⃗v)

v ∈ Vrd ::= end | no | yes

Evaluating non-determinism
Run monitors in parallel

The ‘guess’ construct (Apt and Plotkin 1986)
: Guess the satisfaction (resp. violation) witness

: Equality: accumulate forbidden values
: Richer theories: accumulate constraints

Deterministic Monitors

m, n ∈ DMon ::= v ∈ Vrd |
⊗
i∈I

bi(⋆)mi | rec X(⃗v).m | X(⃗v)

where for all i ̸= j ∈ I, bi and bj are mutually exclusive. 10

Examples

The first token does not appear again
φfirst̸= = ∀x [⋆ = x] maxX.

(
[⋆ = x]ff ∧ [⋆ ̸= x]X(x)

)
(⋆ = x)rec X.(⋆ = x)no ⊗ (⋆ ̸= x)X

No two tokens are the same

φ∀̸= = maxX.
(
∀x.[⋆ = x]

(
maxY.[⋆ = x]ff∧ [⋆ ̸= x]Y

)
∧ [⋆ ̸= x]X

)
rec X.(⋆ = x)rec Y.

(
(⋆ = x)no ∧ (⋆ ̸= x)Y

)
∧ (⋆ ̸= x)X

11

Monitorable Fragments

φ,ψ ∈ cHML ::= tt | ff | ⟨b(⋆)⟩φ | φ ∨ ψ | min X.φ | X(⃗v) | ∃x.φ
φ, ψ ∈ sHML ::= ff | tt | [b(⋆)]φ | φ ∧ ψ | max X.φ | X(⃗v) | ∀x.φ

φ, ψ ∈ detsHML ::= ff | tt | max X.φ | X(⃗v) |
∧
i∈I

[∀x.x = ⋆∧bi(⋆)]φi

12

Register Automata

Data-free setting: recHML ≡ ω-regular
Register Automata (Kaminski and Francez 1994)

Finite automata with a finite set
R of registers

• Store data
• Test register content

Transitions q φ,A,G−−−→ q′

• φ ∈ QF(R, ⋆): test
• A ⊆ R: assignment
• G ⊆ R: guessing

∀x [⋆ = x] maxX.
(
[⋆ = x]ff ∧ [⋆ ̸= x]X(x)

)

ff
⊤, x,∅

⋆ ̸= x,∅,∅

⋆ = x,∅,∅

13

recHML (with data) and Register Automata

Theorem (work in progress)
recHML and register automata are equi-expressive. More precisely:

• recHML ≡ alternating RA
• sHML ≡ non-deterministic reachability RA
• cHML ≡ universal safety RA
• sHMLnf ≡ deterministic RA (in particular, no guessing)

Fact

DRA

NRA URA

ARA

⊋ ⊊

dual

⊊ ⊋

14

Consequences

Strict hierarchy between fragments
: In particular, sHMLnf is not a normal form
: Monitors do not determinise (need for parallelism)

Undecidability Results
• (semantic) membership to a fragment is undecidable
• Monitorability is undecidable

Non-maximality
The data values in the first block are pairwise distinct:

{d0 . . . dn# · · · | ∀0 ≤ i < j ≤ n, di ̸= dj}

: Violations can be detected by a NRA, not by a URA.
15

Conclusion

• Monitor synthesis extends to systems with data
• However, the logic is not as well-behaved…
• Leverage correspondence with register automata

Future Work
• Maximal fragments
• Fragments with efficient monitors
• First-order formulas in modalities
• How to evaluate accumulated constraints?

16

Other Interests

• Reactive synthesis
• Richer models of computation
• Games on graphs
• Multi-agent systems

17

