Runtime Monitoring for Hennessy-Milner
Logic with Recursion over Systems with Data

Ongoing Work

Léo Exibard
Tuesday, December 6", 2022

Séminaire du LIGM

Context: Formal Verification

Goal
Ensure that a system behaves correctly
System Correctness
= Non-terminating Simple properties ~ regular

= Produces execution traces (or almost)

Model-checking
Given a model of the system S and a property ¢,
Check that S complies with ¢

Context: Formal Verification

Goal
Ensure that a system behaves correctly
System Correctness
= Non-terminating Simple properties ~ regular

= Produces execution traces (or almost)

Model-checking
Given a model of the system S and a property ¢,
Check that S complies with ¢

Example: Server producing tokens

The server does not produce the
secret token (s) before closing (c).
~> In LTL: (=s)Uc.

Runtime Verification

= We do not have a model of the system

> Check whether the property holds along the execution

Trace
Non-terminating @ ~

€AY
System

Runtime Verification

= We do not have a model of the system

> Check whether the property holds along the execution

Trace
Non-terminating ~ "
System @ €A Monitor
Monitor

Processes trace to raise a verdict:

Runtime Verification

= We do not have a model of the system

> Check whether the property holds along the execution

Trace
Non-terminating ~ "
System @ €A Monitor
satisfaction violation
Monitor

Processes trace to raise a verdict:

= Satisfaction yes = Violation no

Runtime Monitoring

Irrevocability
Once produced, a verdict cannot change
Runtime Monitoring vs Model-checking

= Model-checking: given a model of the system S and a property
¢, check whether S satisfies ¢ — emptiness of SN A,

= Runtime monitoring: given a trace t of the system and a
property ¢, check if t satisfies ¢ — membership of t in A,
Questions
= What properties are monitorable (for a given monitor model)?

= How to synthesise monitors from formulas?

Example : A Server Producing Tokens

The secret token is not leaked before closing

= Linear-time Temporal Logic (LTL): (—s)Uc

Example : A Server Producing Tokens

The secret token is not leaked before closing
= Linear-time Temporal Logic (LTL): (—s)Uc

= Linear-time modal p-calculus:

aka recHML
min X. ((c)tt V ([s]££ A /\[a]X)
a#s

Example : A Server Producing Tokens

The secret token is not leaked before closing
= Linear-time Temporal Logic (LTL): (—s)Uc

= Linear-time modal p-calculus:

aka recHML
min X. ((c)tt V ([s]££ A /\[a]X)
a#s
Server

Example : A Server Producing Tokens

The secret token is not leaked before closing
= Linear-time Temporal Logic (LTL): (—s)Uc

= Linear-time modal p-calculus:

aka recHML
min X. ((c)tt V ([s]££ A /\[a]X)
a#s

Server

Example : A Server Producing Tokens

The secret token is not leaked before closing
= Linear-time Temporal Logic (LTL): (—s)Uc

= Linear-time modal p-calculus:

aka recHML
min X. ((c)tt V ([s]££ A /\[a]X)
a#s

Server

Example : A Server Producing Tokens

The secret token is not leaked before closing
= Linear-time Temporal Logic (LTL): (—s)Uc

= Linear-time modal p-calculus:

aka recHML
min X. ((c)tt V ([s]££ A /\[a]X)
a#s

Server

Example : A Server Producing Tokens

The secret token is not leaked before closing
= Linear-time Temporal Logic (LTL): (—s)Uc

= Linear-time modal p-calculus:

aka recHML
min X. ((c)tt V ([s]££ A /\[a]X)
a#s

Server !
violation

Example : A Server Producing Tokens

The secret token is not leaked before closing
= Linear-time Temporal Logic (LTL): (—s)Uc

= Linear-time modal p-calculus:

aka recHML
min X. ((c)tt V ([s]££ A /\[a]X)
a#s
Server

Example : A Server Producing Tokens

The secret token is not leaked before closing
= Linear-time Temporal Logic (LTL): (—s)Uc

= Linear-time modal p-calculus:

aka recHML
min X. ((c)tt V ([s]££ A /\[a]X)
a#s

Server

Example : A Server Producing Tokens

The secret token is not leaked before closing
= Linear-time Temporal Logic (LTL): (—s)Uc

= Linear-time modal p-calculus:

aka recHML
min X. ((c)tt V ([s]££ A /\[a]X)
a#s

Server

Example : A Server Producing Tokens

The secret token is not leaked before closing
= Linear-time Temporal Logic (LTL): (—s)Uc

= Linear-time modal p-calculus:

aka recHML
min X. ((c)tt V ([s]££ A /\[a]X)
a#s

Server

Example : A Server Producing Tokens

The secret token is not leaked before closing
= Linear-time Temporal Logic (LTL): (—s)Uc

= Linear-time modal p-calculus:

aka recHML
min X. ((c)tt V ([s]££ A /\[a]X)
a#s

Server !
satisfaction

Hennessy-Milner Logic with Recursion

Syntax
0, € recHML == tt | (a)p | oV | min X.p | X

| ££ | [ale | @AY | max X

Recursion: Fixpoints
= min: least fixpoint

= max: greatest fixpoint

Linear Time

Models = traces

= (e at
%)
a t
= [ale: ¢

Monitoring recHML

Monitors
m,n € Mon := v e Vrd |am|m+n |recXm|X

ve Vrdi=end | no | yes

Monitorable Fragments
0, € sSHML == tt | ff|[ale |@ Ay | max X | X (violation)
w, 0 € cHML :=tt | £f | (a)¢ | @ V¢ | min X.p | X (satisfaction)

Monitor Synthesis
= Finite-state monitors suffice
= Compositional (Francalanza, Aceto, and Ingélfsdéttir 2015)
= Monitors can be determinised (Aceto et al. 2020)

Systems with Data

Data = elements from an infinite alphabet with some structure.
Data Domains
Infinite set with decidable theory: (N, =), (Q, <), (X*, <prec)
Server providing tokens

= Tokens are now integers

= We only need equality checks

Temporal Logics over Systems with Data

Various Logics
s Freeze LTL
= FO?[<,~]
= etc (see Demri and Quaas 2021)

= Here: recHML with quantifiers (inspired from Groote and
Mateescu 1998)

o, € recHML :==tt | (b(*))p | V¥ | min X | X(V) |3Ixe
| ££ | [b(x)]e | @AY | max X | Vx.

b(x): quantifier-free FO formula

The first token does not appear again

Pfirste = ¥ [x = X max X. ([* = x££ A [x # X]X(x))

No two consecutive tokens are the same

Psucet = VXx.[x = x] max X. (Vy.[* =y=XffA[x=y# x]X(y))

No two tokens are the same

Py+ = max X. <Vx.[* = x](max Y.[x = x££ A[x # X Y) A[x # X]X)

Monitoring with Data

Monitors
m,n € Mon := v € Vrd | b(x).m | guess x.m | m+ n | rec X(V).m | X(V)
ve Vrd i=end | no | yes

Evaluating non-determinism

Run monitors in parallel
The ‘guess’ construct (Apt and Plotkin 1986)

> Guess the satisfaction (resp. violation) witness

- Equality: accumulate forbidden values
> Richer theories: accumulate constraints

Deterministic Monitors
m,n € DMon == v € Vrd | ® bi(x)mj | rec X(v).m | X(V)

icl
where for all i # j € I, b; and b; are mutually exclusive. 10

The first token does not appear again
Pfirst = ¥ [x = x] max X. ([* = x££ A [x £ X]X(x))
(* = x)rec X.(x = x)no ® (x # x)X

No two tokens are the same
Py+ = max X. <Vx.[* = x](max Y.[x = x££ A[x #] Y) A[x # X]X)

rec X.(x = x)rec Y. ((* = 3)n0 A (% # X) v) A (x £)X

11

Monitorable Fragments

o, € cHML :=tt | ££ | (b(x)}p | @V ¥ | min Xp | X(V) | Ix.p
o, € sHML := £f | tt | [b(X)]e |pAY | max Xe | X(V) | Vxp

0, € detsHML == ££ | £t | max X | X(V) | [\[Vx.x = *Abi(*)]gi
i€l

12

Register Automata

Data-free setting: recHML = w-regular

Register Automata (Kaminski and Francez 1994)

. . . .\ A,G
Finite automata with a finite set Transitions g SAILN q
R of registers = p € QF(R,*): test

s Store data = A C R: assignment

= [est register content = G C R: guessing

Vx [x = x] max X. ([* = x££ A [x # X]X(x))

* #£ X, D, D

@ T,x, 0 R*X’®’®©
_/ N

13

recHML (with data) and Register Automata

Theorem (work in progress)

recHML and register automata are equi-expressive. More precisely:
= recHML = alternating RA
= sHML = non-deterministic reachability RA
= cHML = universal safety RA

= sHML" = deterministic RA (in particular, no guessing)

Fact ARA

/N
G W
/ N

NRA — dual — URA

\ /
N
N\ /

DRA 14

Consequences

Strict hierarchy between fragments
= In particular, sHMLnf is not a normal form

- Monitors do not determinise (need for parallelism)

Undecidability Results
= (semantic) membership to a fragment is undecidable

= Monitorability is undecidable

Non-maximality
The data values in the first block are pairwise distinct:

{do...dp#t--- | VO < i< j< nd#d}

- Violations can be detected by a NRA, not by a URA.

15

Conclusion

= Monitor synthesis extends to systems with data
= However, the logic is not as well-behaved...

= Leverage correspondence with register automata

Future Work
= Maximal fragments
= Fragments with efficient monitors
= First-order formulas in modalities

= How to evaluate accumulated constraints?

16

Other Interests

= Reactive synthesis
= Richer models of computation
= Games on graphs

= Multi-agent systems

17

