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Context

This work is part of a line of research which aims at extending existing results in the field of synthesis to the realm of data words, i.e. words over a (slightly) infinite alphabet [Bojanczyk, 2018]. In Dave, Filiot,

Krishna, and Lhote, 2020, the authors characterised computability for regular functions. We here study the case of functions defined by Nondeterministic Register Transducers (NRT), which are an extension of

Register Automata (introduced as FiniteMemory Automata in Kaminski and Francez, 1994) modelling relations over data words.

Motivation: Synthesis

The Synthesis Problem

Input: the specification S ⊆ In ×Out of the behaviour of a program

:What should be done

Output: a machineM having such behaviour

: How it should be done

In is a set of inputs

Out is a set of outputs

Formally,M has to be such that

for each input i ∈ dom(S ), (i ,M (i )) ∈ S .

Functionality

Here, we study the case where the graph of S is a function.

Computability

The Computability Problem

Input: the specification of a function f : In → Out

Output: an algorithmwhich computes f

Computability for Functions Defined over InfiniteWords

f : Σω → Γω is computable if there exists a deterministic TuringMachineM which,
on reading longer and longer prefixes of the input w ,

produces longer and longer prefixes of the output f (w ).

: IfM (u, k ) denotes the content of the output tape when the input reading head goes past position k ,
we have for all k ∈ Î,M (u, k ) � f (u) and ‖M (u, k )‖ −−−−−→

k→+∞
+∞ � denotes the prefix relation

‖w ‖ is the length of the wordw .

Continuity

Cantor Distance

For u,v ∈ Aω, d (u,v ) =

{
0 if u = v

2−‖u∧v ‖ otherwise
where u ∧ v is the longest common prefix ` of u and v

`
u[l ]

v [l ]

,

. . . u

. . . v

Continuous Function

f : Σω → Γω is continuous at u if:

[i ≥ 0, \j ≥ 0, [v ∈ dom(f ), ‖u ∧ v ‖ ≥ j ⇒ ‖f (u) ∧ f (v )‖ ≥ i

f is continuous if it is continuous at every point u of its domain.

f : w 7→

{
aω if |w |a = ∞

bω otherwise
is not continuous.

Computability and Continuity

Computability⇒Continuity

: Always holds

Continuity⇒Computability

: Does not hold in general.

Consider for instance the constant (hence continuous) function f : u 7→ h where for all i ∈ Î, h[i ] = 1
iff the i -th TuringMachine halts (0 otherwise): f is not computable.

However:

Regular Functions

Theorem [Dave et al., 2020]: For regular functions, i.e. functions recognised by MSO transductions,

computability and continuity coincide and are decidable in PTime.

Remark: regular functions are equivalently recognised by two-way transducers with regular lookahead, and again

equivalently by 1way transducers with registers, a.k.a. streaming string transducers.

Main Result: Extension to the Realm of DataWords

For functions defined by Nondeterministic Register Transducers, computability and continuity again coincide and are decidable in PSpace.

Non-continuity is characterised by the following pattern:

A function fT realised by a transducerT is not continuous iff there exists

an initial configuration (i0, τ0),

an accepting configuration (qf , µ) and a configuration (q , τ),

finite input data words u,v , finite output data words u′,v ′,u′′,v ′′ admitting runs as

depicted on the right, and

an infinite input data wordw admitting an accepting run from configuration (q , τ)

producing outputw ′′,

such that


mismatch(u′,u′′)

or

v ′′ = ε andmismatch(u′,u′′w ′′)

mismatch(x , y ) holds when

there exists i ∈ {1, . . . ,min(‖x ‖, ‖y ‖)}
such that x [i ] , y [i ]

i0, τ0 qf , µ

i0, τ0 q , τ

u | u′

u | u′′

v | v ′

v | v ′′

w | w ′′

Example of a Nondeterministic Register Transducer

1 2 3 4
del,> | r1, ε

ch,> | ∅, ε

ch, r ,1 | r2, ε

ch,> | ∅, ε

#,> | ∅, ε

σ, r =1 | ∅, (σ, r2)

σ, r ,1 ∧ r ,2 | r0, (σ, r0)

Setting: we deal with logs of communications between a set of clients. A log is an infinite sequence of pairs consisting of a tag in

Σ, and the identifier of the client delivering this tag, modelled as an integer.
For a given client that needs to be modified, each of its messages should now be associated with some new identifier. The

transformation has to verify that this new identifier is indeed free, i.e. never used in the log.

Before treating the log, the transformation receives as input the id of the client that needs to be modified (associated with the

tag del), and then a sequence of identifiers (associated with the tag ch), ending with #.

This transducer is non-deterministic as it has to guess which of these identifiers it can choose to replace the one of the client.

DataWords

Sequences of pairs (a, d ) ∈ Σ × D

Σ finite alphabet of labels

D infinite set of data

1 2 2 3 1 3 1
. . .

req req grt req grt grt req

Register Transducers

Transitions are q
i ,ϕ | ↓rin, wo
−−−−−−−−−→ q ′:

i ∈ Σin is the input letter

ϕ is the test conducted over the input data

rin ∈ R is the register where the input data is stored

wo ∈ (Σout × R )∗ is a finite sequence of pairs (o, r ),
meaning each label o is output along with the content of r .

Additional Results: Test-Free NRT

: A Nondeterministic Register Transducer is test-free if for all its

transitions, it conducts no test over the input data, i.e. ϕ = >.

The following problems are in polynomial time for this subclass:

Functionality

Continuity

Equivalence

Additional Results: the Class NRTf

NRTf denotes the class of functions defined by Nondeterministic Register Transducers.

It is decidable in PSpace if a given relation S ∈ NRTf (functionality problem)

NRTf is closed under composition

It is decidable in PSpacewhether two functions inNRTf coincide on the intersection of their domain

FutureWork

Equip NRTwith nondeterministic reassignment, i.e. the ability to guess the content of a register

Generalise to the case where data are linearly ordered: (Ñ, <) and (Î, <)
((Î, <) is harder because it is not oligomorphic)

Synthesise from a specification which is not functional (already difficult in the finite alphabet case)
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