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Abstract—We study finite automata running over infinite
binary trees and we relax the notion of accepting run by
allowing a negligible set (in the sense of measure theory) of
non-accepting branches. In this qualitative setting, a tree is
accepted by the automaton if there exists a run over this tree
in which almost every branch is accepting. This leads to a new
class of tree languages, called the qualitative tree languages that
enjoys many properties.

Then, we replace the existential quantification — a tree is
accepted if there exists some accepting run over the input
tree — by a probabilistic quantification — a tree is accepted
if almost every run over the input tree is accepting. Together
with the qualitative acceptance and the Büchi condition, we
obtain a class of probabilistic tree automata with a decidable
emptiness problem. To our knowledge, this is the first positive
result for a class of probabilistic automaton over infinite trees.

I. INTRODUCTION

Finite automata on infinite trees were originally intro-
duced by Rabin in [16] to prove the decidability of the
monadic second order logic over the full binary tree as
well as to solve the Church’s synthesis problem [7]. Since
then, automata on infinite trees and their variants have
been intensively studied and found many applications, in
particular in logic. Connections between automata on infinite
trees and logic are discussed in the excellent surveys [17],
[18].

Roughly speaking a tree automaton is a finite memory
machine that takes as input an infinite node-labelled binary
tree and processes it in a top-down fashion as follows. It
starts at the root of the tree in its initial state, and picks
(possibly nondeterministically) two successor states, one
per son, according to the current control state, the letter
at the current node and the transition relation. Then the
computation proceeds in parallel from both sons, and so on.
Hence a run of the automaton on an input tree is a labelling
of this tree by control states of the automaton, that should
satisfy the local constrains imposed by the transition relation.
A branch in a run is accepting if the !-word obtained by
reading the states along the branch satisfies some acceptance
condition (typically an !-regular condition such as a Büchi
or a parity condition). Finally, a tree is accepted by the
automaton if there exists a run over this tree in which every
branch is accepting. An !-regular tree language is a tree
language accepted by some tree automaton equipped with

a parity condition. A fundamental result of Rabin is that
!-regular tree languages form a Boolean algebra [16]. The
hard part in this proof is the complementation, and since the
publication of this result in 1969, it has been a challenging
problem to simplify the proof. A much simpler one was
obtained in [11] making use of two-player games on graphs.
Beyond this result, the connection between automata and
games is one of the main tool in automata theory (see e.g.
[10]).

In this article, we consider variations of the classical
model of tree automata over infinite trees. Theses variations
involve probabilities and preserve the fruitful connection
with game theory.

In the first part of this paper, we consider a relaxed notion
of accepting run. While the usual definition requires that all
branches satisfy the acceptance condition, we allow a negli-
gible set (in the sense of measure theory) of non-accepting
branches. In this qualitative setting, a tree is accepted by
the automaton if there exists a run over this tree in which
almost every branch is accepting. With the parity condition,
this leads to a new class of tree languages, qualitative tree
languages. We show that this class enjoys many desirable
properties: closure under union and intersection (but not
under complement), emptiness is decidable in polynomial
time (note that no polynomial algorithm is known for the
emptiness test of parity tree automata). We also prove that
there exists a strong connection between automata accepting
qualitative tree languages and Markov decision processes,
which play here a similar role as two-player games for usual
tree automata.

The idea of allowing a certain amount of rejecting
branches in a run was already considered in [4], where it
was required that the number of accepting branches in a run
belong to a specified set of cardinals �. In particular, they
proved that if � consists of all cardinals greater than some
�, then one obtains a regular tree language. Qualitative tree
languages as defined in this article are not captured by the
work of [4]. Indeed, they are incomparable with regular tree
languages.

In the second part of this paper, we investigate probabilis-
tic automata on infinite trees. Acceptance by an automaton
is based on existential quantification: an input is accepted if
there exists an accepting run over it. Probabilistic automata
are an alternative way to define acceptance. On finite words



they have been introduced by Rabin in [15]. Compared
with the standard setting, the non-deterministic guesses are
replaced by random choices. Hence the set of transitions
is replaced by a probability distribution over the set of all
transitions which induces a probability measure on the set
of runs of the automaton. The acceptation is defined using
a threshold 0 † � † 1 on the probability of a run to be
accepting. In contrast to the non-deterministic setting, the
emptiness problem for probabilistic automata on finite words
is undecidable [13].

This probabilistic model was recently extended to infinite
words [2]. In addition to the threshold acceptation, two
additional acceptations were considered : almost-sure and
positive which respectively corresponds to a probability 1
or °0 for a run to be accepting1. Surprisingly the class
of languages defined by Büchi automata with the positive
acceptation is closed under complement, which implies
that it coincides with the class of languages defined by
co-Büchi automata with the almost-sure acceptation2. The
emptiness problem for Büchi automata with the almost-sure
acceptation are decidable. However the emptiness problem
for Büchi automata with the positive acceptation as well
as for co-Büchi automata with the almost-sure acceptation
are undecidable. Of course, emptiness is undecidable when
considering a threshold condition. See [1] for more details
on this topic.

We consider probabilistic automata on infinite trees which
accept a tree if almost every run over the input tree is
accepting. For the qualitative definition of accepting runs,
we prove that there exists a strong connection with partial
observation Markov decision processes. In particular, for
the Büchi condition, these probabilistic automata on infinite
trees enjoy a decidable emptiness problem. To our knowl-
edge, this is the first positive result for a class of probabilistic
automaton over infinite trees.

In the last part, we discuss alternative definitions for
qualitative acceptance as well as acceptance by probabilistic
automata.

II. DEFINITIONS

A. Words and Trees
An alphabet A is a finite set of letters. In the sequel A˚

denotes the set of finite words over A, and A! the set of
infinite words over A. The empty word is written "; the
length of a word u is denoted by |u|. Let u be a finite
word and v be a (possibly infinite) word. Then u ¨ v denotes
the concatenation of u and v; the word u is a prefix of v,

1In the finite word case, the almost-sure and positive acceptation are
trivial as the set of runs for a given word is finite.

2Indeed, let L be accepted by a Büchi automaton with the positive
acceptation. As one can complement, there is a Büchi automaton with the
positive acceptation A such that L is the language accepted by A. If one
sees A as a co-Buchi automaton B (final states become the forbidden ones)
with a almost-sure acceptation, B accepts a word iff A does not. Hence,
B recognises the complement of L, namely L.

denoted u Ñ v, iff there exists a word w such that v “ u ¨w.
We denote by u Ä v the fact that u is a strict prefix of v
(i.e. u Ñ v and u �“ v). For some word u and some integer
k • 0, we denote by uk the word obtained by concatenating
k copies of u (with the convention that u0

“ ").
In this paper we consider full binary node-labelled trees.

An A-labelled tree t is a mapping from t0, 1u
˚ to A. In this

context, an element u P t0, 1u
˚ is called a node, and the

node u ¨ 0 (resp. u ¨ 1) is the left son (resp. right son) of u.
The node " is called the root. We shall refer to |u| as the
depth of u. The letter tpuq is called the label of u in t.

A branch is an infinite word ⇡ P t0, 1u
! . We write Br “

t0, 1u
! for the set of all branches. A node u belongs to

a branch ⇡ if u is a prefix of ⇡. For an A-labelled tree t
and a branch ⇡ “ ⇡0⇡1 ¨ ¨ ¨ we define the label of ⇡ as the
!-word tp⇡q “ tp"qtp⇡0qtp⇡0⇡1qtp⇡0⇡1⇡2q ¨ ¨ ¨ . The cone
going through a node u is the set Conepuq “ u ¨ t0, 1u

! . A
sub-cone of a cone Conepuq is a cone Conepvq with u Ñ v.

Given a tree t and a node u, the subtree of t rooted at
u denoted trus is the tree defined by truspvq “ tpu ¨ vq. A
tree t is said to be regular if it contains only finitely many
different subtrees, i.e. the set ttrus | u P t0, 1u

˚
u is finite.

Let FBr be the �-algebra generated by the set of cones
(i.e. the smallest set of subsets of t0, 1u

! containing the
cones and closed under countable union and complementa-
tion). Let µ be the unique probability measure on FBr such
that for all u P t0, 1u

˚, µpConepuqq “ 2´|u|. The existence
and unicity of µ are guaranteed by Carathéorody’s extension
theorem [3]. For all 0 † p † 1, a probability measure µp is
similarly defined by taking µppConepuqq “ p|u|0p1 ´ pq

|u|1
where |u|0 and |u|1 respectively designate the number of
occurrences of 0 and 1 in u. In particular, the measure µ
corresponds to µ1{2.

B. Tree Automata and Regular Tree Languages
A tree automaton A is a tuple xA,Q, qini,�,Accy where

A is the input alphabet, Q is the finite set of states, qini P Q
is the initial state, � Ñ Q ˆ A ˆ pQ ˆ Qq is the transition
relation and Acc Ñ Q! is the acceptance condition. In the
following, we use the notation q

a
Ñ pq0, q1q as a shorthand

for pq, a, pq0, q1qq P �. An automaton is deterministic iff
q

a
Ñ pq0, q1q and q

a
Ñ pq1

0, q
1
1q implies q0 “ q1

0 and q1
1 “ q1

1.
An automaton is complete iff, for all q P Q and a P A there
is at least one pair pq0, q1q P Q2 such that q a

Ñ pq0, q1q.
Given an A-labelled tree t, a run of A over t is a Q-

labelled tree ⇢ such that
‚ the root is labelled by the initial state, i.e. ⇢p"q “ qini;
‚ for all nodes u, p⇢puq, tpuq, ⇢pu ¨ 0q, ⇢pu ¨ 1qq P �.
A branch ⇡ P t0, 1u

! is accepting in the run ⇢ iff ⇢p⇡q P

Acc. A run ⇢ is accepting if all its branches are accepting.
Finally, a tree t is accepted if there exists an accepting run
of A over t. The set of all trees accepted by A is denoted
LpAq.

We consider the following classical acceptance conditions:



‚ A reachability condition is given by a subset F Ñ Q
of final states by letting ReachpF q “ Q˚FQ! , i.e. a
branch is accepting if it contains a final state.

‚ A Büchi condition is given by a subset F Ñ Q of final
states by letting BuchipF q “ pQ˚F q

! , i.e. a branch is
accepting if it contains infinitely many final states.

‚ A co-Büchi condition is given by a subset F Ñ Q of
forbidden states by letting coBuchipF q “ Q˚

pQzF q
! ,

i.e. a branch is accepting it contains finitely many
forbidden states.

‚ A parity condition is given by a colouring mapping
Col : Q Ñ N by letting Parity “ tq0q1q2 ¨ ¨ ¨ |

lim infpColpqiqqi is evenu, i.e. a branch is accepting if
the smallest colour appearing infinitely often is even.

All these conditions are examples of !-regular acceptance
condition, i.e. Acc is regular set of !-words [14]. However,
the parity condition is expressive enough to capture the
general case of an arbitrary !-regular condition. First, one
considers a deterministic parity word automaton recognis-
ing Acc, and then takes the synchronised product of this
automaton with the tree automaton. This leads to a parity
tree automaton accepting the same language [14].

When it is clear from the context, we may replace, in the
description of A, Acc by F (for a reachability, Büchi or
co-Büchi condition) or Col (for a parity condition), and we
shall refer to the automaton as a reachability (resp. Büchi,
co-Büchi, parity) tree automaton. A set L of trees is a regular
language if there exists a parity tree automaton A such that
L “ LpAq. The class of regular tree languages is robust, as
illustrated by the following statement.

Theorem 1. [16],[9] The class of regular tree languages is
a Boolean algebra.

A regular tree languages is non-empty iff it contains a
regular tree. Testing the emptiness of a regular tree language
(defined by a given parity automaton) is in NP X co ´ NP.

C. Markov Decision Process
1) Perfect information setting: A probability distribution

over a countable set X is a mapping d : X Ñ r0, 1s such
that

∞
xPX dpxq “ 1. In the sequel we denote by DpXq the

set of probability distributions over X .
An arena is a tuple G “ xS, sini,⌃, ⇣y where S is a

countable set of states, sini is an initial state, ⌃ is a finite
set of actions and ⇣ : S ˆ⌃ Ñ DpSq is the transition (total)
function.

A play in such an arena proceeds as follows. It starts in
state sini and Éloïse picks an action �, and a successor state
is chosen according to the probability distribution ⇣psini,�q.
Then Éloïse chooses a new action and the state is updated
and so on forever. Hence a play is an infinite sequence
s0s1s2 ¨ ¨ ¨ P S! such that s0 “ sini and for every i • 0,
there exists a � P ⌃ with ⇣psi,�qpsi`1q ° 0. In the sequel
we refer to a prefix of a play as a partial play and we denote
by Plays the set of all plays.

A (pure) strategy3 for Éloïse is a function ' : S˚
Ñ ⌃

assigning to every partial play an action. Of special interest
are those strategies that does not require memory: a strategy
' is memoryless iff 'p� ¨ sq “ 'p�1

¨ sq for all partial play
�, �1 and all states s (i.e. ' only depends on the current
state). A play � “ s0s1s2 ¨ ¨ ¨ is consistent with a strategy
' if ⇣psi,'pv0 ¨ ¨ ¨ viqqpsi`1q ° 0, for all i • 0.

Now, for any partial play �, the cylinder for � is the set
Cylp�q “ �S! . Let FP be the �-algebra generated by the
set of cylinders. Then, pPlays,FP q is a measurable space.

A strategy ' induces a probability space over
pPlays,FP q. Indeed, one defines a measure µ' on cylinders
and then uniquely extends it to a probability measure on
FP using the Carathéodory’s unique extension theorem. For
this, we first define inductively µ' on cylinders:

‚ as all plays start from sini, we let µ'pCylpsiniqq “ 1;
‚ for any partial play � ending in some state s, we let
µ'pCylp� ¨ s1

qq “ µ'pCylp�qq ¨ ⇣ps,'p�qqps1
q.

We also denote by µ' the unique extension of µ' to
a probability measure on F . Then pPlays,FP , µ'q is a
probability space.

An objective is a measurable set O Ñ Plays: a play
is winning if it belongs to O. A Markov decision process
(MDP, aka one-and-half-player game) is a pair pG,Oq where
G is an arena and O is an objective. In the sequel we
should focus on !-regular objectives (which are easily seen
to be measurable), whose definitions are the same as for the
acceptance condition on tree automata (the only difference
is that we may have an infinite set of states).

A strategy ' is almost-surely winning if µ'pOq “ 1. If
such a strategy exists, we say that Éloïse almost-surely wins
G. The value of G is defined as ValpGq “ sup' µ'pOq, and
a strategy ' is optimal iff ValpGq “ µ'pOq.

When the set of actions ⌃ is reduced to one element,
the MDP pG,Oq is called a Markov chain and we omit the
unique action from all the definitions. The set of Plays is
called the set of traces of the Markov chain and is denoted
Traces. We write µG the probability measure associated with
the unique strategy. We say that the Markov chain almost-
surely fulfils its objective if µGpOq “ 1.

MDPs over finite graphs enjoys many good properties.

Theorem 2. [8], [6] Let G be an MDP over a finite arena
with a parity objective. Then, one can decide in polynomial
time whether Éloïse almost-surely wins. Moreover, Éloïse
always has an optimal memoryless strategy.

2) Imperfect information setting: Now we consider the
case where Éloïse has imperfect information about the
current state. For this, we consider an equivalence relation
„ over S. We let rss„ be the equivalence class of s for „

and S{„ be the set of equivalence classes of „ over S.

3We do not consider here randomised strategies as in the setting of this
paper they are useless. Note that for finite MDP, optimal strategies — when
exists — can always be chosen to be pure.



The intuitive meaning of „ is that two states s1 „ s2
cannot be distinguished by Éloïse. We easily extend „ to
partial plays: s0s1 ¨ ¨ ¨ sn „ s1

0s
1
1 ¨ ¨ ¨ s1

n iff si „ s1
i for all

i “ 0, ¨ ¨ ¨ , n. If �1 „ �2 Éloïse cannot distinguish �1 from
�2: therefore she should behave the same in both of them.

Hence, we should only consider so-called observation-
based strategies. An observation-based (pure) strategy is a
function ' : pS{„q

˚
Ñ ⌃, i.e., to choose her next action,

Éloïse considers the sequence of observations she got so
far4. In particular, an observation-based strategy ' is such
that 'p�q “ 'p�1

q whenever � „ �1. In this context, a
memoryless strategy is a function from S{„ Ñ Dp⌃q, i.e. it
only depend on the current equivalence class.

A partial observation Markov decision process (POMDP,
aka one-and-half-player imperfect information game) is a
triple pG,„,Oq where G is an arena, „ is an equivalence
relation over states and O is an objective. We say that Éloïse
almost-surely wins G if she has an almost-surely winning
observation-based strategy. Finally the value of G is defined
as ValpGq “ sup' µ'pOq where ' ranges over observation-
based strategies; optimality is defined as previously.

The following decidability results are known for POMDP:

Theorem 3. [1] In a POMDP with a Büchi objective,
deciding whether Éloïse almost-surely wins is ExpTime-
complete. Moreover if Éloïse has an almost-surely winning
strategy, she has an almost-surely winning strategy with
finite memory. In a POMDP with a co-Büchi objective, it
is undecidable whether Éloïse almost-surely wins.

Remark 1. The results in Theorem 2 and 3 do not depend on
the encoding of probability distributions, as the only relevant
information is which probabilities are non zero.

III. QUALITATIVE TREE LANGUAGES

A. Definition

In the classical definition, a run of a tree automaton A is
accepting if all its branches satisfy the acceptance condition.
In this article, we introduce a more relaxed notion of
acceptation: a run is qualitatively accepting if almost every
(in the sense of the measure µ) branch in it is accepting.
More formally, consider a tree automaton A with an !-
regular acceptance condition. A run ⇢ of A is qualitatively
accepting if the set AccBrp⇢q “ t⇡ P t0, 1u

!
| ⇢p⇡q P Accu

has measure 1, i.e. µpAccBrp⇢qq “ 1. Note that, thanks to
Proposition 1 below, the set AccBrp⇢q is indeed measurable.
A tree t is qualitatively accepted if there exists a qualita-
tively accepting run of A over t and the set of all trees
qualitatively accepted by A is denoted LQualpAq. Finally, a
qualitative tree language is a set L of trees such that there
is a parity automaton A such that LQualpAq “ L.

4By abuse of notation, we shall write 'ps0 ¨ ¨ ¨ snq to mean
'prs0s„ ¨ ¨ ¨ rsns„q

Proposition 1. Let A be a tree automaton equipped with an
!-regular acceptance condition, and let ⇢ be a run of A.
Then the set AccBrp⇢q is measurable.

Example 1. Let La be the language of ta,bu-labelled
trees whose set of branches containing at least one
a has measure 1. This language is recognised by
the following reachability deterministic automaton A “

xta,bu, tqini, qfu, qini,�, tqfuy where: � “ tqini
b

Ñ

pqini, qiniq, qini
a

Ñ pqf , qf q, qf
a

Ñ pqf , qf q, qf
b

Ñ pqini, qiniqu.
If one considers A as a Büchi automaton, the accepted

language consists of those trees whose set of branches
containing infinitely many a has measure 1.

Example 2. Let L1 be the language of trees t such that in
almost every branch, there is a node u labelled by a such
that the subtree trus has only a on its leftmost branch. This
language is recognised by the non-deterministic reachability
automaton A “ xA,Q, qw,�, tqaccuy with A “ ta,bu,
Q “ tqw, ql, qacc, qreju, and � contains the following
transitions: qw

_
Ñ pqw, qwq, qw

_
Ñ pql, qaccq, ql

a
Ñ pql, qaccq,

ql
b

Ñ pqrej , qrejq, qacc
_

Ñ pqacc, qaccq, qrej
_

Ñ pqrej , qrejq

(here _ is a shorthand for an arbitrary letter). Intuitively, the
automaton can wait in state qw as long as it wants. It can at
some node u use the second transition: this leads to accept
(all branches in) the cone going through the right son, as
well as those subtrees rooted at the right of the left-most
branch going through u if this branch does not contain a
node labelled b (note that the left-most branch going through
u will be rejecting, but this does not affect the measure as
there are only countably many such branches). If the left-
most branch going through u contains a b at node v then
the cone of branches going through v is rejecting.

Remark 2. The choice of the measure µ though natural is
arbitrary. Considering the measure µp for some 0 † p †

1
2

would not affect the results obtained in this article (provided
that definitions of the games are modified accordingly).
However note that changing the measure does change the
accepted language for a given automaton. For instance,
consider the deterministic Büchi automaton A of Example 1
and the ta,bu-labeled tree such that for all u P t0, 1u

˚ by
tpuq “ a if and only if µppConepuqq ° µpConepuqq.

A consequence of the proof of Kakutani’s theorem in [12]
is that µppAccBrp⇢0qq “ 1 and µpAccBrp⇢0qq “ 0 where
⇢0 designates the unique run of A over t.

Remark 3. A more general definition is to associate with any
letter a in the alphabet a pair pp0a, p

1
aq P r0, 1s

2 with p0a `

p1a “ 1 and then to define the measure of a cone in a tree t
by letting µpConepu1 ¨ ¨ ¨unqq “ pu1

tp"qp
u2

tpu1q . . . p
un

tpu1¨¨¨un´1q.
Intuitively, the node label determines the respective weights
of the left and right sons in the definition of the measure.
In particular the measure µp is the one obtained by letting
pp0a, p

1
aq “ pp, 1 ´ pq for all letters a in the alphabet.



Again, with such a measure the results obtained in this
article (provided that definitions of the games are modified
accordingly) remains correct.

For the same reasons as for regular tree languages, the
parity condition is expressive enough to capture any !-
regular conditions: for any automaton A with an !-regular
acceptance condition, there exists a parity automaton B

such that LQualpAq “ LQualpBq. Thanks to the following
proposition, we can only focus on complete automata.

Proposition 2. For any tree automaton A with an !-
regular acceptance condition, there exists a complete tree
automaton B with the same acceptance condition and such
that LQualpAq “ LQualpBq.

Unsurprisingly determinism is a restriction.

Proposition 3. There is a qualitative tree language that
cannot be qualitatively accepted by any deterministic au-
tomaton.

B. Pumping Lemma
Let t be a tree and u P t0, 1u

˚ be a node. A pair � “

pt, uq is called a pointed tree. With a pointed tree �1 “

pt1, u1q and a tree t2, we associate a new tree, �1 ¨ t2,
by plugging t2 in t1 instead of the subtree rooted at u1.
Formally, �1¨t2puq “ t1puq if u1 is not a prefix of u and �1¨

t2puq “ t2pu1
q if u “ u1u1 for some u1

P t0, 1u
˚. We can

also define the product of two pointed trees �1 “ pt1, u1q

and �2 “ pt2, u2q by letting �1 ¨ �2 “ p�1 ¨ t2, u1 ¨ u2q.
Finally, with a pointed tree � “ pt, uq, we associate a tree
�! by taking an !-iteration of the product: �!

pvq “ tpv1
q

where v1 is the shortest word s.t. v “ ukv1 for some k • 0.
Qualitative tree languages enjoy a pumping lemma, which

contrasts with regular tree languages.

Lemma 1. Let A be an n-states parity automaton, t be a
tree in LQualpAq and u be a node of depth greater that n.
Then there exists three pointed trees �1, �2 and �3 such
that t “ �1 ¨ �2 ¨ �3 ¨ trus and �1 ¨ �!

2 P LQualpAq.

C. Closure Properties
We now investigate the closure properties of qualitative

tree languages under Boolean operations.

Proposition 4. Qualitative tree languages are closed under
union and intersection.

Unsurprisingly, qualitative tree languages are not closed
under complement. This is a simple consequence of
Lemma 1

Proposition 5. Qualitative tree languages are not closed
under complement.

Proof (sketch): One shows that the complement La of
the language La of Example 1 does not satisfy the pumping

t

�1

�2

�3

trus

q

q

u

�1.�!
2

�1

�2

�2

�2

q

q

q

q

Figure 1. Pumping Lemma

lemma. For this, consider a tree that contains only a’s except
on a subtree rooted deep enough where all nodes are labelled
by b. This tree belongs to La, but if one pumps and removes
the subtrees made of b’s one gets a tree in La.

D. Emptiness Problem

It is well known that tree automata (as acceptors of reg-
ular languages) and two-player (perfect information) game
are closely related [11], [10]. In particular, the emptiness
problem for regular tree languages and the problem of
deciding the winner in a parity game on a finite graph
are polynomially equivalent. From the proof of this result
also follows that a regular tree language is non-empty iff it
contains a regular tree.

We show that a similar connection exists between tree au-
tomata as acceptors of qualitative tree languages and MDPs.
For this, fix a parity tree automaton A “ xA,Q, qini,�,Coly
and a tree t. Consider the arena GA,t “ xS, sini,⌃, ⇣y where
S “ Q ˆ t0, 1u

˚
Y tKu, sini “ pqini, "q, ⌃ “ � and ⇣ is

defined as follows. First we let dK be the distribution defined
by dKpsq “ 1 if s “ K and dKpsq “ 0 otherwise, and,
for all q0, q1 P Q and u P t0, 1u

˚, we let dq0,q1,u be the
distribution such that dq0,q1,upq0, u0q “ dq0,q1,upq1, u1q “

1{2 and dq0,q1,upsq “ 0 for all other s P S. Then we
let ⇣ppq, uq, pq1, a, q0, q1qq “ dK if q ‰ q1 or a ‰ tpuq,
⇣ppq, uq, pq, tpuq, q0, q1qq “ dq0,q1,u and ⇣pK,�q “ dK for
all � P �. Finally, we define a colouring function ⇢ by
letting ⇢ppq, uqq “ Colpqq and ⇢pKq “ 1, and we call
GA,t “ pGA,t,O⇢q the MDP equipped with the parity
objective O⇢ defined by ⇢. Then, the following holds:

Theorem 4. The tree t belongs to LQualpAq iff Éloïse
almost-surely wins in GA,t.

Proof (sketch): The key idea here is to note that
strategies for Éloïse in GA,t are in bijection with runs of A
over t, and that this map preserves the measure. In particular,



the set of winning plays when Éloïse follows a strategy has
the same measure than the set of accepting branches in the
corresponding run.

Consider the (finite) arena GA “ xS, sini,⌃, ⇣y where
S “ Q ˆ t0, 1u Y tqini,Ku, sini “ qini, ⌃ “ � and ⇣ is
defined as follows. First we let dK be the distribution defined
by dKpsq “ 1 if s “ K and dKpsq “ 0 otherwise, and, for
all q0, q1 P Q, we let dq0,q1 be the distribution such that
dq0,q1ppq0, 0qq “ dq0,q1ppq1, 1qq “ 1{2 and dq0,q1psq “ 0
for all other s P S. Then we let ⇣ppq, iq, pq, a, q0, q1qq “

dq0,q1 , ⇣ppq, iq, pq1, a, q0, q1qq “ dK if q ‰ q1,
⇣pqini, pqini, a, q0, q1qq “ dq0,q1 , ⇣pqini, pq, a, q0, q1qq “ dK
if q ‰ qini, and ⇣pK,�q “ dK for all � P �. Finally, we
define a colouring function ⇢ by letting ⇢ppq, iqq “ Colpqq

and ⇢pKq “ 1, and we call GA “ pGA,O⇢q the MDP
equipped with the parity objective O⇢ defined by ⇢. Then,
the following hold:

Theorem 5. The language LQualpAq is non empty iff Éloïse
almost-surely wins in GA from qini.

Proof (sketch): The idea is the same as for the proof
of Theorem 4 except that now strategies are seen as pairs
made of an A-labeled tree and a run of A over it. Again, the
value of the strategy is the same as the measure of the set
of accepting branches in the run, which allows to conclude.

Corollary 1. Let A be a parity tree automaton. Then one
can decide whether LQualpAq “ H in polynomial time.
Moreover, if LQualpAq �“ H, it contains a regular tree, and
such a tree can be constructed in polynomial time.

Proof (sketch): Complexity follows from theorems
5 and 2. Regular trees are associated with memoryless
strategy: as those are sufficient to play optimally in finite
MDP, it permits to conclude.

E. Regular Tree Languages and Qualitative Tree Languages
are Incomparable

In this section, we prove that regular tree languages and
qualitative tree languages are incomparable.

Proposition 6. There is a regular tree language that is not
qualitative.

Proof (sketch): The regular language of those ta,bu-
labelled trees containing at least one node labeled by b, does
not satisfies Lemma 1, hence it is not qualitative.

Theorem 6. There is a qualitative tree language that is not
regular.

Proof: Let La be the language of trees whose set of
branches containing at least one a has measure 1. This
language is qualitative as noticed in Example 1. In the
sequel, we prove that La is not regular.

u

a

depth 0 Ñ

depth |u| Ñ

depth nu ` 1 Ñ

Figure 2. The tree t0

We first prove that, for any regular tree t, if there is no
cone in t whose branches only contain the letter b, then
t P La. Let t be a regular tree, we can assume w.l.o.g.
that if there is a node labelled by a then all its descendants
are labeled by a. Then the property “there is no cone in
t whose branches only contain b” is the same as “every
subtree contains a subtree made only of a”. Let X1, . . . , Xn

be the n different subtrees of t, and for all i, let µi be the
measure of the set of branches containing a in Xi (we call it
the value of Xi). We can assume that @i µ1 § µi. If Xi1 and
Xi2 are the two sons of X1, we know that µ1 “

µi1`µi2
2 .

Since µ1 § µi for i “ i1, i2, µi1 “ µi2 “ µ1. Hence we
can prove by induction that for all Xi of minimal value, all
the subtrees of Xi have minimal value too. Since there is
a subtree of a (of value 1) in X1, µ1 “ 1 hence for all i,
µi “ 1, hence the value of t is 1, hence t P La.

We assume by contradiction that La is regular. The
closure properties of regular tree languages implies that the
following language L is also regular:

L “
 
t

ˇ̌
t R La ^ “there is no cone

in t whose branches only contain b”
(

Using our previous characterisation of regular trees in La

it follows that L does not contain any regular tree, hence
L is empty (Theorem 1). Then, to raise a contradiction, we
build a (non-regular) tree t P L.

For every node u P t0, 1u
˚, we let nu be the integer

whose binary representation is 1.u. The tree t is defined as
follows: let v P t0, 1u

˚, if there exists some u such that
v “ u.0nu`1´|u| then t0pvq “ a, otherwise t0pvq “ b (see
Figure 2). We now establish that t R La. First note that the
set of branches in t that contains at least one a is obtained
by taking the union of those cones Cpuq such that tpuq “ a.
Then remark that, for every level `, there is one and only
one node u of depth ` labelled by a (except for ` “ 0, 1
where there are no such u). Thus we can bound the measure
µ of the set of branches in t that contains at least one a:

µ §

`8ÿ

`“2

2´`
“

1

2

This proves that t R La. Moreover, it follows from the
definition, that for every node u, there is a branch (the



leftmost one) in the cone Cpuq that contains an a, hence
t P L, which contradict the fact that L is empty.

F. The Value of a Tree May not be Reached
So far we defined qualitative acceptance of a tree by

the existence of a run whose set of accepting branches has
measure 1. We can refine this notion by defining the value
of a tree as follows. For A a tree automaton, and t a tree
we let

ValAptq “ sup
⇢t run of A over t

µpAccBrp⇢tqq

In particular LQualpAq is the set of trees t whose value is
1 and is reached for some run (i.e. the sup is a max). The
following result proves that the value may not be reached
by some run.

Theorem 7. There is a reachability automaton A and a tree
t such that ValAptq “ 1 but t R LQualpAq.

Actually, the proof of Theorem 4 leads the following.

Theorem 8. Let A be a parity tree automaton and let t be
a tree. Then ValAptq “ ValpGA,tq.

IV. BEYOND NON-DETERMINISTIC AUTOMATA: THE
PROBABILISTIC SETTING

Following [16] for finite words and [2], [1] for infinite
words we investigate probabilistic automata on infinite trees.
That is the set of transitions of an automaton is replaced
by a probability distribution over the set of all transitions
which induces a probability measure on the set of runs of
the automaton. Now, a tree is accepted if almost every run
over the input tree is accepting. For the run, we may use
either the classical or the qualitative acceptance criterion.

A. Definitions
A probabilistic tree automaton A is a tuple

xA,Q, qini, �,Accy where A is the input alphabet, Q
is a finite set of states, qini P Q is the initial state,
Acc Ñ Q! is the acceptance condition and � is a mapping
from Q ˆ A ˆ Q ˆ Q to r0, 1s such that for all q P Q and
a P A,

∞
q1,q2PQ �pq,a, q1, q2q “ 1. Intuitively, the value

�pq,a, q1, q2q is the probability for a transition q
a

Ñ pq1, q2q

to be used by the automaton when it is in state q and reads
the symbol a.

This probability distribution on the transitions induces a
probability measure on the set of runs of A. In this setting,
a run of A is simply a Q-labeled tree whose root is labeled
by the initial state qini. We denote by RunspAq (or simply
Runs if A is clear from the context) the set of all runs of A.
We denote by AccRunspAq the set of accepting runs of A

and by QualAccRunspAq the set of qualitatively accepting
runs of A.

Let t be a tree. A partial run � is a mapping from
t0, 1u

n to Q for some n • 0 with �p"q “ qini. A partial

run � is a prefix of a run ⇢ if for all w P Domp�q,
�pwq “ ⇢pwq. The cylinder for a partial run �, denoted
CylAp�q, is the set of runs of A admitting � as a prefix.
Let FR be the �-algebra generated by the cylinders. By
Carathéorody’s extension theorem, there exists a unique
probability measure µt on the measurable space pRuns,FRq

such for all partial run � : t0, 1u
n

Ñ Q, µtpCylAp�qq

is equal to
±

wPt0,1un´1 �p�pwq, tpwq,�pw0q,�pw1qq. Note
that both µt and pRuns,FRq depend on t.

Proposition 7. For all probabilistic tree automata A with an
!-regular acceptance condition, the sets AccRunspAq and
QualAccRunspAq are measurable.

A tree t is (almost-surely) accepted by A with the classical
semantic if almost all runs of A on t are accepting (i.e.
µtpAccRunspAqq “ 1). We denote by L“1

pAq the set of
trees accepted by A with the classical semantics for runs. A
tree t is (almost-surely) accepted by A with the qualitative
semantic if almost all runs of A on t are accepting (i.e.
µtpQualAccRunspAqq “ 1). We note L“1

QualpAq the set of
trees accepted by A with the qualitative semantics for runs.

Remark 4. Our motivation for considering almost-sure
acceptation and not positive acceptation is discussed in
Section V.

The almost-sure acceptation of a tree t by an automaton
A for the qualitative semantic can be defined by integrating
the mapping fA : Runs ˆ Br Ñ r0, 1s associating to a pair
p⇢,⇡q P Runs ˆ Br the value 1 if ⇢p⇡q belongs to Acc and
0 otherwise.

Proposition 8. Let A be a probabilistic tree automaton
with an !-regular acceptance condition and let t be a
tree. The mapping fA is integrable in the product space
pRunspAq,FR, µT q b pBr,FBr, µq and we have:

t P L“1
QualpAq ô

ª
fAdµt b µ “ 1

Proof sketch: First we show that fA is measurable.
Then, by Fubini’s theorem [3, Thm 23.6 - p. 138], the
mapping g : Runs Ñ r0, 1s associating with a run ⇢ P Runs
the value

≥
Br fAp⇢, ¨qdµ is measurable.

t belongs to L“1
QualpAq

iff µtpg´1
pt1uqq “ 1

iff
≥
Runs g dµt “ 1

iff
≥
Runs

≥
Br fAdµdµt “ 1 by definition of g

iff
≥
RunsˆBr fAdµT b µ “ 1 by Fubini’s thm.

We conclude this section with examples of languages
accepted by probabilistic tree automata.

For an !-word language L Ñ ta,bu
! , we denote by

Path“1
pLq the set of trees labeled by ta,bu with almost all

their branch labels in L (i.e. µpt⇡ P Br | tp⇡q P Luq “ 1).
It is easy to see that, for any !-regular language L, the tree



language Path“1
pLq is a qualitative tree language. More

interesting, if L is almost-surely accepted by a probabilistic
!-word automaton5 with an !-regular acceptance condition,
we can show that Path“1

pLq is accepted by a probabilistic
tree automaton (with the qualitative semantic).

Proposition 9. Given a probabilistic !-word automaton
B with an !-regular acceptance condition, there exists a
probabilistic tree automaton A with the same acceptance
condition such that L“1

QualpAq is equal to Path“1
pL“1

pBqq.

Proof (sketch): Let B “ xA “ ta,bu, Q, qini, �,Accy

be a probabilistic !-word automaton with an !-regular
condition. Consider the probabilistic tree automaton A

simulating B along all branches. Formally A is equal to
xA,Q, qini, �1, F y where, for all p, q P Q and x P A,
�1

pp,x, q, qq “ �pp,x, qq and otherwise is equal to 0.
Let t be a tree and let g : Br Ñ r0, 1s be the mapping

associating to a branch ⇡ the value
≥
fAp¨,⇡q dµt. For any

⇡ P Br, gp⇡q “ 1 if and only if tp⇡q belongs to L“1
pBq.

t P L“1
QualpAq

ô
≥
fAdµt b µ “ 1 by Proposition 8

ô
≥
gdµ “ 1 by Fubini’s thm

ô gp⇡q “ 1 almost everywhere
ô µpt⇡ | tp⇡q P L“1

pBquq “ 1
ô t P Path“1

pBq

B. Acceptance games for qualitative probabilistic tree au-
tomata

Fix a probabilistic tree automaton A “ xA,Q, qini, �,Accy

and a tree t. We define a Markov chain MA,t “

pGA,t,OAccq such that MA,t almost-surely fulfils its objec-
tive iff t belongs to L“1

QualpAq. Compared with the accep-
tance game for qualitative tree automata, the transition is no
longer chosen by Éloïse: it is now randomly chosen with
the probability distribution given by A. Hence we simply
obtain a Markov chain instead of an MDP.

The arena GA,t is equal to xS, sini, ⇣y where S “ Q ˆ

t0, 1u
˚

Y�ˆ t0, 1u
˚ with � “ QˆQˆQ, sini “ pqini, "q

and ⇣ : S fiÑ DpSq is defined as follows. For all w P t0, 1u
˚

and all q P Q, ⇣ppq, wq, pq, q0, q1qq “ �pq, tpwq, q0, q1q

for all q0, q1 P Q and is equal to 0 otherwise. For all
w P t0, 1u

˚ and q0, q1 P Q, ⇣pppq, q0, q1q, wq, pq0, w0q “

⇣pppq, q0, q1q, wq, pq1, w1qq “
1
2 and 0 otherwise. Recall that

µMA,t denotes the probability measure associated to MA,t.
To simplify the presentation, note that a trace in

MA,t can be uniquely represented by an infinite se-
quence ppp0, q00 , q

1
0q, a0qppp1, q01 , q

0
1q, a1q . . . labeled by �ˆ

t0, 1u such that p0 “ qini and for all i • 0,
pi`1 “ qai

i . The objective OAcc is the set of traces

5In the context of this article, probabilistic !-word automata are simply
probabilistic tree automata running over unary trees. For such an automaton
B, we denote by L“1pBq the language almost-surely accepted by B.

ppp0, q00 , q
1
0q, a0qppp1, q01 , q

0
1q, a1q . . . such that p0p1 . . . P

Acc.

Proposition 10. Let A be a probabilistic tree automaton
with an !-regular acceptance condition and let t be a tree.
t P L“1

QualpAq iff MA,t almost-surely fulfils its objective.

Proof (sktech): Let AccPairspAq “ tp⇢,⇡q | ⇢p⇡q P

Accu. By Proposition 8, to establish the desired equiva-
lence, it is sufficient to show that µt b µpAccPairspAqq “

µMA,tpOAccq.
Consider the mapping  : Runs ˆ Br fiÑ Traces

associating with any pair p⇢, a0a1 . . .q the trace
p⇢p"q, ⇢p0q, ⇢p1qqa0p⇢pa0q, ⇢pa00q, ⇢pa01qqa1 . . . of the
Markov chain. It is clear that AccPairspAq “  ´1

pOAccq.
The mapping  is measurable and µMA,t is the
image of µt b µ under  . In particular it implies that
µMA,tpOAccq “ µt b µpAccPairspAqq.

Let us now consider the case of probabilistic tree automata
with the usual semantic for runs (i.e. all branches must be
accepting). In this setting, a naive definition of an acceptance
game consists, when choosing the successor, in replacing
random by a second player, Abelard, However this game
does not faithfully reflect the acceptation of the automaton.

Consider the reachability probabilistic tree automaton
A “ xtau, tq0, qfu, q0, �, tqfuy with �pq0,a, q0, q0q “

3
4 ,

�pq0,a, qf , qf q “
1
4 , �pqf ,a, qf , qf q “ 1 and 0 otherwise.

Consider the tree ta where all nodes are labeled by a. It can
be shown that the set of accepting runs of A over ta has
measure 1

3 . Hence the tree ta does not belong to L“1
pAq.

Now consider the naive acceptance game for A on ta.
Intuitively in this game, player random chooses a transition
pp, q0, q1q and Abelard chooses to proceed either to q0
or to q1. The set of states is t0, 1u

˚
ˆ t✓0, ✓1, ✓fu with

✓0 “ pq0, q0, q0q, ✓1 “ pq0, qf , qf q and ✓f “ pqf , qf , qf q,
the initial state is p", ✓0q and the actions of Abelard are in
t0, 1u. For x P t0, 1u, the transition function is such that for
all w P t0, 1u

˚ we have: ⇣ppw, ✓0q, xq is the probability
distribution assigning 3

4 to pwx, ✓0q and 1
4 to pwx, ✓1q,

⇣ppw, ✓1q, xq “ ⇣ppw, ✓f q, xq is the probability distribution
assigning 1 to pwx, ✓f q. The objective O is the set of plays
containing ✓f .

It is easy to check that the strategy of Abelard has no
influence on the value of the game. In fact for any fixed
strategy, the game is equivalent to the Markov chain depicted
below which fulfils its objective with probability 1.

q0 qf

1
4

3
4 1

C. Decidability results
In this section, we show that the emptiness problem

for probabilistic Büchi tree automata is decidable for the
qualitative semantics for runs. This result is by reduction to



deciding almost-surely winning in a POMDP, and the reduc-
tion works for any !-regular acceptance condition. However,
the decision problem on POMDPs is only decidable for the
Büchi condition.

Let A “ xA,Q, qini, �,Accy be a probabilistic automaton
with an !-regular acceptance condition and � “ QˆQˆQ.

We consider the POMDP G“1
A “ pG,„,Oq. The arena

G is equal to xS, sini,⌃, ⇣y where S “ Q ˆ t0, 1,Ku ˆ

p� Y tKuq, sini “ pq0,K,Kq, ⌃ “ A and ⇣ is defined as
follows. For all a P A and pp, x, tq P S, ⇣ppp, x, tq, aq is the
distribution that assigns 1

2�pp, a, q0, q1q to pqy, y, pp, q0, q1qq

where y “ 0, 1 and 0 to all other state. The objective O is
the set of plays for which the sequence of states obtained
when projecting on the first component belongs to Acc. The
equivalence „ is defined by pq, x, tq „ pq1, x1, t1

q iff x “ x1.

Theorem 9. Let A be a probabilistic tree automaton with
an !-regular acceptance condition. The language L“1

QualpAq

is non-empty if and only if Éloïse almost-surely wins in GA.

Proof: From the definitions, we easily have that tr�s„ |

� P Plays “ rKs„tr0s„, r1s„u
˚. Hence it is sufficient to

consider strategies from rKs„tr0s„, r1s„u
˚ to A, that can

also be seen as A-labeled trees. Once such a strategy 't

(seen as a tree t) is fixed, the resulting Markov chain is, up
to renaming, GA,t, meaning that the value of 't is the value
of GA,t. In particular, Éloïse almost-surely wins in GA iff
there is some t such that ValpGA,tq “ 1 iff t P L“1

QualpAq

(thanks to Proposition 10).

Corollary 2. Let A be a probabilistic Büchi tree automaton.
Deciding whether L“1

QualpAq “ H is ExpTime-complete.
Moreover, if L“1

QualpAq ‰ H, it contains a regular tree.

Proof: The Exptime upper-bound follows from the
polynomial time reduction to deciding almost-surely win-
ning in a Büchi POMDP. Existence of finite memory optimal
strategies in POMDP implies the existence of a regular
tree when L“1

QualpAq ‰ H. The lower bound follows from
Proposition 9: emptiness of probabilistic Büchi !-word au-
tomata with the almost-sure acceptation (which is Exptime-
complete [1]) can be reduced to our problem.

We show that the emptiness problem for probabilistic co-
Büchi tree automata is undecidable for both the classical and
qualitative semantics for runs. These results are obtained by
reduction to the undecidability of the emptiness problem for
co-Büchi !-word automata with the almost-sure acceptation
[1].

Theorem 10. The following problems are undecidable :
1) given a probabilistic co-Büchi tree automaton A,

decide if L“1
pAq “ H,

2) given a probabilistic co-Büchi tree automaton A,
decide if L“1

QualpAq “ H.

Proof: Both undecidability results are shown by reduc-
tion to the undecidability of the emptiness problem for co-

Büchi !-word automata (with the almost-sure acceptation).
The case of qualitative semantic directly follows from Propo-
sition 9. It remains to treat the case of the classical semantic
for runs.

Let B “ xA “ ta,bu, Q, qini, �, F y be a probabilistic
co-Büchi !-word automaton. We construct a probabilistic
co-Büchi automaton A which simulates B on the left-most
branch of the tree and checks that all other branches contain
only as. Formally A is equal to xA,Q Y tqKu, qini, �1, F Y

tqKuy. The probability distribution �1 is given by:
$
’’&

’’%

�1
pqa,a, qa, qaq “ 1

�1
pqa,b, qK, qKq “ 1

�1
pqK, x, qK, qKq “ 1 for x P A

�1
pp, x, q, qaq “ �pp, x, qq for x P A and q P Q

In all other cases, �1 is equal to 0.
A tree t belongs to L“1

pAq if and only if for all u R 0˚,
tpuq “ a and tp0!q P L“1

pBq. In particular L“1
pAq is

empty if and only if L“1
pBq is empty.

D. Comparison with qualitative languages
In this section, we give an example of a tree language

that is accepted by a co-Büchi probabilistic automaton but
that is not a qualitative tree language.

For this we consider the !-word language P� over ta,bu

defined, for all 0 † � † 1, by:

L� “ tak1bak2b . . . | k1, k2, . . . ° 0 s.t.
8π

i“1

p1 ´ �kiq ° 0u

In [1], L� is shown to be almost-surely accepted by a co-
Büchi probabilistic automaton6. Therefore, by Proposition 9,
Path“1

pL�q is a co-Büchi probabilistic qualitative tree
language.

Proposition 11. For all 0 † � † 1, Path“1
pL�q is not a

qualitative tree language.

Proof (sketch): For all 0 † � † 1, Path“1
pL�q is

nonempty and does not contain any regular tree. Hence
according to Corollary 1, it is not a qualitative tree language.

Remark 5. Using the correspondence with POMDP intro-
duced in Theorem 9, any co-Büchi automaton accepting
Path“1

pL�q gives rise to an example of a co-Büchi POMDP
GA in which Éloïse needs infinite memory to almost-surely
win.

V. DISCUSSION

Throughout this paper, we favoured the almost-sure con-
dition (i.e. requiring the measure to be equal to 1) over
the positive one (i.e. requiring the measure to be strictly
positive). However, the decidability results on MDPs stated

6They show that L� is positively accepted by a Büchi automaton. But
as previously remarked in the introduction, the two classes coincide.



in Theorem 2 still hold if we replace the almost-sure
acceptance by the positive acceptance [8], [6]. Similarly
the decidability and undecidability results on POMDP stated
in Theorem 3 transfer to positive acceptance provided that
one replaces Büchi by co-Büchi and vice versa [1]. In
this discussion, we summarise the impact when considering
positive acceptance instead of almost-sure acceptance, and
motivate our choices.

A run is °0-qualitively accepting if the measure of its set
of accepting branches is strictly positive. The class of °0-
qualitative tree languages is defined similarly to the class
of qualitative tree languages by consider °0-qualitatively
accepting run instead of qualitatively accepting run. The
two classes are incomparable. However, °0-qualitative lan-
guages enjoy most of the good properties of qualitative
languages presented in Section III-C. In particular, the
decidability results stated in Theorem 4, Theorem 5 and
Corollary 1 transfer to °0-qualitative languages (of course
almost-sure acceptance needs to be replaced by positive
acceptance). In addition, the °0-qualitative languages are
also incomparable with regular tree languages. The most
notable difference between the two classes is that °0-
qualitative languages are not closed under intersection. In
addition, the pumping lemma (Lemma 1) and the restriction
to complete automata (Proposition 2) no longer hold.

Moving to the probabilistic automata setting, we now
have to consider two possible acceptance conditions on
the set of runs – almost-sure (“1) and positive (°0) –
and two possible definitions for a run to be accepting –
qualitative (“1) and positive (°0). By combining these
conditions, we obtain four semantics for probabilistic tree
automata denoted by p°0,°0q, p°0,“1q, p“1,°0q and
p“1,“1q where the first component corresponds to the
requirement on the set of accepting runs and the second
to the requirement on the set of accepting branches of
a run. In Section IV, we mainly dealt with p“1,“1q-
probabilistic automata which have a tight link with POMDP
for the almost-sure winning condition (cf. Theorem 9). It
can be shown that p°0,°0q-probabilistic automata share
the same connection with POMDP with the positive winning
condition. It implies that the emptiness problem for the
p°0,°0q-probabilistic automata with the co-Büchi accep-
tance condition is ExpTime-complete.

When the two conditions are not of the same nature (as for
the p°0,“1q and p“1,°0q semantics), we were unable to
define a proper acceptance game — see for instance a similar
discussion at the end of Subsection IV-B for the semantic
p“1,@q.
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