Reconnaissabilité dans les systèmes dynamiques symboliques

24 novembre 2022

1 Thématique

Dynamique symbolique

2 Laboratoire

Laboratoire d'informatique Gaspard-Monge UMR 8049 Université Gustave Eiffel

3 Ville et pays

Marne-la-Vallée, France

4 Équipe dans le laboratoire

Équipe BAAM (Bases de données, Automates, Analyse d'algorithmes et Modèles)

5 Nom et adresse électronique du directeur de stage

Marie-Pierre Béal, marie-pierre.beal@univ-eiffel.fr Dominique Perrin dominique.perrin@esiee.fr

6 Présentation générale du domaine

La dynamique symbolique [3] est un domaine à la frontière des mathématiques discrètes et de l'informatique théorique. Il s'agit d'étudier les modèles discrets des systèmes dynamiques.

7 Objectifs du stage

L'objectif du stage est d'étendre des résultats de reconnaissabilité des shifts substitutifs aux systèmes définis par des séquences de morphismes, dits systèmes S-adic.

Soit A,B deux alphabets finis. Une substitution est $\sigma\colon A\to B^*$ est un morphisme de monoides de A^* dans B^* . La substitution est effaçante s'il existe une lettre a telle que $\sigma(a)$ est le mot vide.

Le shift $X(\sigma)$ associé à $\sigma \colon A \to A^*$ est l'ensemble des suites bi-infinies de séquence $x \in A^{\mathbb{Z}}$ dont tous les facteurs finis sont facteurs d'un mot $\sigma^n(a)$ avec $n \geq 0$ et $a \in A$. Le décalage $S \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ est défini par y = S(x) si et seulement si $y_n = x_{n+1}$ pour tout $n \in \mathbb{Z}$.

Une propriété importante des shifts substitutifs est la reconnaissabilité. Cette notion caractérise la non ambiguïté de la représentation d'une suite bi-infinie y comme image d'une suite bi-infinie x par σ .

Soit $\sigma \colon A^* \to B^*$ un morphisme. Une σ -représentation de $y \in B^{\mathbb{Z}}$ est une paire (x,k) où $x \in A^{\mathbb{Z}}$ et k est un entier telle que

$$y = S^k(\sigma(x)),$$

où S est le décalage. La σ -représentation (x,k) est centrée si $0 \le k < |\sigma(x_0)|$.

Un morphisme $\sigma \colon A^* \to B^*$ est reconnaissable sur un shift X (resp. reconnaissable sur X pour les points apériodiques) si pour tout point $y \in B^{\mathbb{Z}}$ (resp. tout point apériodique $y \in B^{\mathbb{Z}}$) il existe au plus une représentation centrée (x,k) de y avec $x \in X$.

Le résultat suivant est une extension du Théorème de Mossé :

Theorem 1 Tout morphisme σ est reconnaissable sur $X(\sigma)$ pour les points apériodiques.

Ce résultat indique ainsi que chaque point apériodique de $X(\sigma)$ a une unique σ représentation centrée. Un point y est apériodique s'il n'exite pas d'entier n > 0tel que $S^n(y) = y$.

Ce résultat a d'abord été obtenu par Mossé pour les morphismes apériodiques primitifs. Il a été entendu par Bezuglyi et al. pour les morphismes non-effaçants et apériodiques. Il a ensuite été prouvé Berthé et al. [2] pour les morphismes non-effaçants et enfin en [1] pour tous les morphismes.

En [2], Berthé et al. ont étendu ce résultat aux shifts dits S-adic, définis par des séquences de morphismes non-effaçants.

L'objectif du stage est d'essayer d'étendre la preuve de reconnaissabilité de [1] aux shifts S-adic définis par des séquences de morphismes qui peuvent être effaçants.

Références

- [1] Marie-Pierre Béal, Dominique Perrin, and Antonio Restivo. Decidable problems in substitution shifts. to appear in Ergodic Theory Dynam. Systems, 2021. arXiv, https://arxiv.org/abs/2112.14499.
- [2] Valérie Berthé, Wolfgang Steiner, Jörg M. Thuswaldner, and Reem Yassawi. Recognizability for sequences of morphisms. *Ergodic Theory Dynam. Systems*, 39(11):2896–2931, 2019.
- [3] Douglas Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge Mathematical Library. Cambridge University Press, 2 edition, 2021.