
L3. Object-oriented programming. Course 1

Marie-Pierre Béal (Rémi Forax’s course)

Getting started in Java

A Brief History of Programming Languages

Languages

In the 60s : COBOL, FORTAN, LISP, ALGOL

Imperative and structured languages (70s) : C, Pascal

Functional languages (80s and 90s) : ML, OCaml, Haskell

Object-oriented languages (80s and 90s) : Smalltalk, C++,
Objective C,

Multiparadigm languages : Java, Python

A Brief History of Programming Languages

Imperative versus functional style

An imperative language :

executes commands
modifies a state (a memory box)

A functional language :

executes functions
the return value of a function depends only on the values of the
parameters

How do we organize and write functions ?

How do we organize and write functions ?

class

encapsulation

sub-typing

late binding

Correspondence of concepts between imperative and
functional styles

imperative functional
Objet + method lambda

Mutable (Collection) Non mutable (String)

loop Stream

The Java language

Java is

statically typed

multi-paradigm (imperative, functional, object-oriented, generic,
declarative and reflexive)

with encapsulation, subtyping, late binding

History of Java

Java Versions

Java 1.0 (1995), Object-oriented

Java 1.5 (2004), Parameterized types

Java 1.8 (2014), Lambda

Java 17 (2021), Record + sealed types

Java 21 (2023) Pattern Matching

Java 23 current, JEP 477 Implicitly Declared Classes and Instance
Main Methods, JEP 476 Module Import Declarations

Created by James Gosling, Guy Steele et Bill Joy à SUN Microsystem
in 1995. It is based on C (syntax) and Smalltalk (virtual machine).

Open source since 2006 http://github.com/openjdk/jdk

http://github.com/openjdk/jdk

The Java platform

Write Once Run Anywhere

Execution environment

Virtual Machine / Runtime

Just In Time (JIT) compiler

Garbage Collectors

Modèle d’exécution

Code Source Assembleur

Code Source Bytecode Assembleur

Code Source Bytecode Assembleur

Modèle du C

Modèle de Java

Modèle de JavaScript

A la compilation A l’execution

interpreter

interpreter

JIT

JIT

Java Reviews

Java is too verbose. Java is the kingdom of names

Java prefers easy-to-read code

Java considers each class as a library (easy to use for users)

Java is dead

Java is backward compatible so it evolves slowly

Children of Java

JavaScript 95

Browser Scripting (Web language)

C#, 2001

Microsoft’s Java

Groovy, 2003

Untyped Java

Scala, 2004

Fusion of object-oriented programming and functional programming

Google Go, 2010

Google’s Java, static compilation

Kotlin, 2011

Scala made simpler

Swift, 2014

Apple’s Java (based on Objective C)

Getting started in Java

Getting started in Java

Getting started in Java

Java is rigid.

To allow easy reading

Things are stored

The code is stored in a function called a method
Methods are stored in a unit called a class

Code conventions

A file is written in CamelCase (uppercase at the beginning) and
ends with the suffix .java

A method or a variable is written in camelCase (lowercase at the
beginning)
Place the opening brace of a method at the end of the line, and
align the closing brace with the start of the block
If a class has a name Foo (see lecture 3), then it is declared in the
file Foo.java

First program

In a file named HelloWorld.java, we write :

void main() {

println("Hello World!");

}

The entry point of the program is the main method

println is a method stored in a class, the class java.io.IO.

We can also write

void main() {

IO.println("Hello World!");

}

Compile in memory and execute

One can compile in memory and execute in one command java
followed by the name of the source file.

$ java --enable-preview HelloWorld.java

Hello World!

The result is on standard output.

Compile and Run

We launch the compilation alone with the javac command
followed by the name of the source file.

$ javac --release 23 --enable-preview HelloWorld.java

A HelloWorld.class file is created.

$ ls

HelloWorld.class HelloWorld.java

$

We launch the execution (the interpretation of the bytecode) by
the Java virtual machine with the java command followed by the
name of the file without the .java suffix.

$ java --enable-preview HelloWorld

Hello World!

JShell

To quickly test or discover an API, there is the interactive REPL jshell
window (with tab to complete)

$ jshell --enable-preview

| Welcome to JShell -- Version 23

| For an introduction type: /help intro

jshell> var a = 3

a ==> 3

jshell> IO.println(a)

3

jshell> /exit

| Goodbye

Types and variables

Types et variables

Types

Java has two kinds of types

Primitive types

boolean, byte, char, short, int, long, float, double

(in lowercase)

Object types

String, Date, Pattern, String[], etc (uppercase on the first
letter)

Type variables

Primitive types are manipulated by their value

int i = 3;

int j = i; // copy 3

We can also write

var i = 3;

var j = i; // copy 3

Object types are manipulated by their memory address (reference)

String s = "hello";

String s2 = s; // copy the address

There is a special null reference. It can be used as a value of any
non-primitive type.

In memory

Primitive type

int i = 3;

int j = i; // copy 3

Object type

String s = "hello";

String s2 = s; // copy the address

i
j

3

3

s

s2

’h’ ’e’ ’l’ ’l’ ’o’

In the bytecode variables are not manipulated by names but by
numbers (0, 1, etc.) in order of appearance.

The operator ==

The == operator is used to test whether two memory cells have the
same value ont la même valeur

var i = 3;

var j = 4;

i == j // renvoie false

i == i // renvoie true

Be careful with objects, == tests if it is the same reference (same
address in memory)

var s = ...

var s2 = ...

s == s2 // tests if it is the same address in memory,

// not the same content

Local variable

Declaration

Type nom; // information for the compiler

// disappears at runtime

Type nom = expression;

équivaut à

Type nom; // information for the compiler

nom = expression; // assignment at runtime

var nom = expression;

asks the compiler to calculate (infer) the type of expression, so
equivalent to

Type(expression) nom = expression;

Primitive types and processor

Processors have 4 types for runtime operations (so on the stack), not
for RAM storage (on the heap) : int 32bits, int 64bits, float 32bits and
float 64bits. So boolean, byte, short, char are 32bit ints. So boolean,
byte, short, char are 32bit ints.

The compiler disallows numeric operations on boolean. For other types,
operations return an int.

short s = 3;

short s2 = s + s; // does not compile, the result is an int

Numerical types and processor

The types byte, short, int, long, float and double are signed.

There is no unsigned tyye except char.

We have specific operations for unsigned

Integer.compareUnsigned(int, int),
Integer.parseUnsignedInt(String),
Integer.toUnsignedString(int),
Byte.toUnsignedInt(byte),
etc

Integers and processor

The int/long are weird

Defined between Integer.MIN VALUE et Integer.MAX VALUE,
otherwise we have an Overflow (goes into positive/negative).

jshell> Integer.MIN_VALUE

$1 ==> -2147483648

jshell> Integer.MAX_VALUE

$2 ==> 2147483647

Donc

Integer.MAX VALUE + 1 == Integer.MIN VALUE

Integer.MIN VALUE - 1 == Integer.MAX VALUE

- Integer.MIN VALUE == Integer.MIN VALUE

Math.abs(Integer.MIN VALUE) == Integer.MIN VALUE

et 1 / 0 throws an ArithmeticException

Floats and processor

float/double are weird too (differently)

0.1 is not representable so we have an approximate value

Imprecision in the computations 0.1 + 0.2 != 0.3

1. / 0. is Double.POSITIVE INFINITY,

-1. / 0. is Double.NEGATIVE INFINITY,

0. / 0. is Double.NaN (Not a Number)

Double.NaN is a number (actually, several) that is not equal to
itself.

Double.NaN == Double.NaN returns false
Double.isNaN(Double.NaN) returns true

In Java we manipulate floats with the double type, not the float
type

We never manipulate prices with floats

Record

Record

Record

A record allows one to declare named tuples.
In a file named PointTest.java file, write :

record Point(int x, int y){}

void main() {

var point1 = new Point(2, 3);

var point2 = new Point(1, 4);

println(point1);
println(point2);

}

We use new to create an instance (an object). Here it reserves enough
memory space to store two integers (the memory is managed by the
garbage collector).

Record

$ java --enable-preview PointTest.java

Point[x=2, y=3]

Point[x=1, y=4]

$ ls

PointTest.java

$ javac --release 23 --enable-preview PointTest.java

$ ls

PointTest$Point.class PointTest.java PointTest.class

$ java --enable-preview PointTest

Point[x=2, y=3]

Point[x=1, y=4]

Instance Methods

Inside a record, we can define methods (functions stored in a record)

record Point(int x, int y) {

double distanceToOrigin() {

return ...

}

}

void main() {

var point = new Point(2, 3);

var distance = point.distanceToOrigin();

}

Instance methods : this explicit

"this" (like ”self” in Python) is a parameter that allows access to the
fields of the current object.

record Point(int x, int y) {

double distanceToOrigin(Point this) {

return Math.sqrt(this.x * this.x + this.y * this.y);

}

}

void main() {

var point = new Point(2, 3);

var distance = point.distanceToOrigin();

}

"this" is the value of the object before the ”.”. For the
point.distanceToOrigin() call, we call the distanceToOrigin()
method of Point with this = point.

Instance methods : implicit this

There is no need to declare this, the compiler adds it automatically

record Point(int x, int y) {

double distanceToOrigin() {

return ...

}

}

void main() {

var point = new Point(2, 3);

var distance = point.distanceToOrigin();

}

Note : It is very rare to see a method with an explicit this. Some people
are unaware that the syntax exists.

implicit access to "this"

If a variable is accessed that is not declared, the compiler adds "this"

record Point(int x, int y) {

double distanceToOrigin() {

return Math.sqrt(x * x + y * y);

}

}

$ java --enable-preview PointTest.java

3.605551275463989

Accessors

In a record, the compiler adds accessor methods automatically. These
are methods with the same names as the fields.

record Point(int x, int y){}

void main() {

var point = new Point(2, 3);

println(point.x());

}

$ java --enable-preview PointTest.java

2

Method equals

In a record, the compiler adds a method equals which returns a
boolean

record Point(int x, int y){}

void main() {

var point1 = new Point(2, 3);

var point2 = new Point(1, 4);

var point3 = new Point(2, 3);;

println(point1.equals(point3));
println(point1.equals(point2));

}

$ java --enable-preview PointTest.java

true

false

Methods hashCode() et toString()

In a record, the compiler also automatically adds methods hashCode
and toString.

The method toString returns a String representing the object.

The method toString is the method called by println.

The method hashCode returns an integer (almost randomly
selected), used for example when putting an object in a collection
using hashing. Two objects equal by equals have the same
hashCode (see later).

Methods hashCode() et toString()

record Point(int x, int y){}

void main() {

var point1 = new Point(2, 3);

var point2 = new Point(2, 3);

var point3 = new Point(4, 5);

println(point1);
println(point1.toString());
println(point1.hashCode());
println(point2.hashCode());
println(point3.hashCode());

}

$ java --enable-preview PointTest.java

Point[x=2, y=3]

Point[x=2, y=3]

65

65

129

Arrays

Arrays

Arrays

Arrays are object types.

They can contain objects or primitive types

String[] ou int[]

We use new to create them
Create an array based on a size

String[] array = new String[16];

var array = new String[16];

initialized with default value : false, 0, 0.0 or null

Create an array based on values

var array = new int[] { 2, 46, 78, 34 };

Arrays

Arrays have a fixed size (not fixed at compile time).
They have a length field which corresponds to their size

array.length (be careful not array.length())

Indices range from 0 to array.length - 1

Arrays are mutable, we use [and]

var array = new int[12];

var value = array[4];

array[3] = 56;

We cannot go out of bounds

var array = new int[12];

array[25] = ... // throw ArrayIndexOutOfBoundsException

array[-1] ... // throw ArrayIndexOutOfBoundsException

Loops on arrays

Java has a shorthand way to write a loop over an array (the for(:)).

for(;;)

var array = new int[12];

for (var i = 0; i < array.length; i++) {

var element = array[i];

...

}

for(:)

var array = new int[12];

for (var element: array) {

...

}

equals/hashCode/toString for arrays

These methods also exist on arrays but do not have the expected
behavior

equals() returns true if the arrays have the same address in
memory

var array1 = new int[] { 1, 2 };

var array2 = new int[] { 1, 2 };

array1.equals(array2); // false

hashCode() returns an almost random number, the same for each
instance

toString() returns hashCode + ”@” + array type

The class java.util.Arrays

The class Arrays (package java.util) provides static utility methods.

To display an array, we will use for example

var numbers = new int[] { 4, 11, 24, 7, 18, 91, 6, 2, 55 };

println(Arrays.toString(numbers));

// [4, 11, 24, 7, 18, 91, 6, 2, 55]

void main() {

var array1 = new int[] { 4, 11, 24, 7, 18, 91, 6, 2, 55 };

var array2 = new int[] { 4, 11, 24, 7, 18, 91, 6, 2, 55 };

println(Arrays.equals(array1, array2)); // true

println(Arrays.hashCode(array1)); // -1095323397

var array3 = new int[] { 4, 11, 24 };

println(Arrays.hashCode(array3)); // 34000

}

Summary

The method that serves as the entry point is called main

void main(){

println("Hello");

}

An object is instantiated (created) by calling new

record Train(int weight){}

void main() {

var train = new Train(250);

}

Summary

A method stored in a record is an instance method.

An instance method is called on an object with the symbol "." after
the object.

record Train(int weight){

void method(){

...

}

}

void main() {

var train = new Train(250);

train.method();

}

