Algorithmique des graphes

4 — Plus court chemin

Marie-Pierre Béal (Cours d'Anthony Labarre)

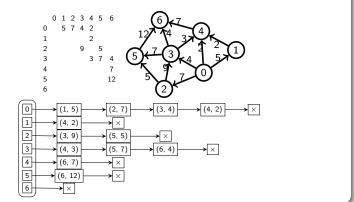
Définition 1

Un graphe orienté pondéré est un graphe orienté G = (V, A, w), où $w:A\to\mathbb{R}:(u,v)\mapsto w(u,v)$ est une fonction affectant à chaque arc un poids réel.

Correction de l'algorithme de Dijkstra

- On peut facilement modifier ce qu'on a déjà vu pour implémenter les graphes pondérés :
 - matrice d'adjacence : poids au lieu de booléens;
 - listes d'adjacence : couples (successeur, poids) au lieu de successeur.

Exemple 1



- On suppose l'existence d'une classe GrapheOrientéPondéré très similaire à la classe GrapheOrienté, avec quelques modifications :
 - ajouter_arc(u, v, poids);
 - ajouter_arcs(séquence);
 - arc();
 - boucles();
 - sous_graphe_induit(séquence).

Implémentation des graphes pondérés

- On suppose l'existence d'une classe GrapheOrientéPondéré très similaire à la classe GrapheOrienté, avec quelques modifications :
 - ajouter_arc(u, v, poids);
 - ajouter_arcs(séquence);
 - arc();
 - boucles();
 - sous_graphe_induit(séquence).
- ... et quelques ajouts ou modifications :
 - successeur(sommet);
 - poids_arc(u, v).

- Les graphes orientés pondérés modélisent fréquemment des réseaux routiers.
- Comment faire pour trouver un chemin de moindre coût (ou poids) allant d'un sommet à un autre?
- Le **poids** d'un chemin est la somme des poids de ses arcs.
- Si le graphe n'était pas pondéré, comment calculerait-on un plus court chemin allant d'un sommet à un autre?

• L'algorithme de Dijkstra construit un arbre des plus courts chemins au départ d'un sommet :

• L'algorithme de Dijkstra construit un arbre des plus courts chemins au départ d'un sommet :

• la racine de cet arbre est le sommet de départ (la source);

L'algorithme de Dijkstra

- L'algorithme de Dijkstra construit un arbre des plus courts chemins au départ d'un sommet :
 - la racine de cet arbre est le sommet de départ (la source);
 - l'arbre ne contient qu'un chemin de poids minimum entre la source et chaque sommet du graphe.

• L'algorithme de Dijkstra construit un arbre des plus courts chemins au départ d'un sommet :

- la racine de cet arbre est le sommet de départ (la source);
- l'arbre ne contient qu'un chemin de poids minimum entre la source et chaque sommet du graphe.
- Hypothèses : le graphe est sans arc de poids négatif.

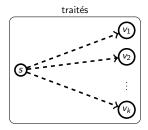
• L'algorithme maintient en permanence un ensemble *S* de sommets déjà traités ;

Description de l'algorithme de Dijkstra

- L'algorithme maintient en permanence un ensemble *S* de sommets déjà traités ;
- À chaque étape de l'algorithme, on examine le sommet non traité le plus proche, et on l'utilise pour découvrir de nouveaux raccourcis;

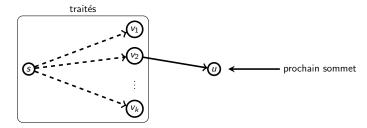
Description de l'algorithme de Dijkstra

- L'algorithme maintient en permanence un ensemble S de sommets déjà traités;
- À chaque étape de l'algorithme, on examine le sommet non traité le plus proche, et on l'utilise pour découvrir de nouveaux raccourcis;



Description de l'algorithme de Dijkstra

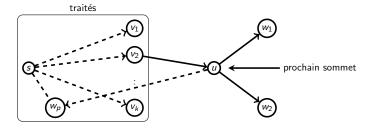
- L'algorithme maintient en permanence un ensemble S de sommets déjà traités;
- À chaque étape de l'algorithme, on examine le sommet non traité le plus proche, et on l'utilise pour découvrir de nouveaux raccourcis;



• L'algorithme maintient en permanence un ensemble S de sommets déjà traités;

Correction de l'algorithme de Dijkstra

• À chaque étape de l'algorithme, on examine le sommet non traité le plus proche, et on l'utilise pour découvrir de nouveaux raccourcis;

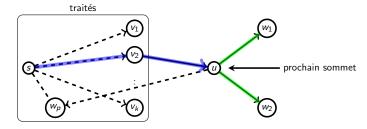


• L'algorithme maintient en permanence un ensemble S de

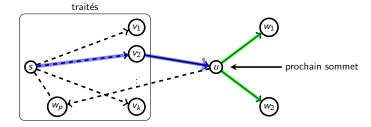
sommets déjà traités;

Correction de l'algorithme de Dijkstra

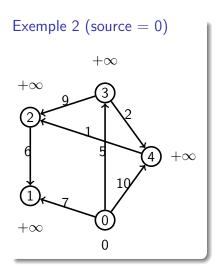
• À chaque étape de l'algorithme, on examine le sommet non traité le plus proche, et on l'utilise pour découvrir de nouveaux raccourcis;



- L'algorithme maintient en permanence un ensemble *S* de sommets déjà traités;
- À chaque étape de l'algorithme, on examine le sommet non traité le plus proche, et on l'utilise pour découvrir de nouveaux raccourcis;

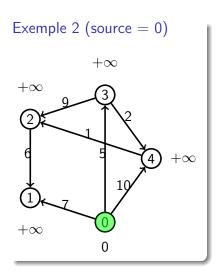


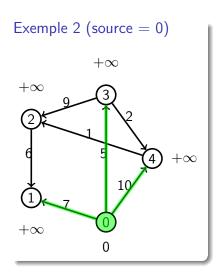
 Attention: on ne traite chaque sommet qu'une fois et la distance d'un sommet déjà traité ne change plus jamais.



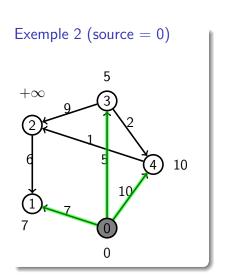
Déroulement de l'algorithme de Dijkstra

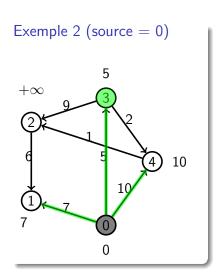
Correction de l'algorithme de Dijkstra



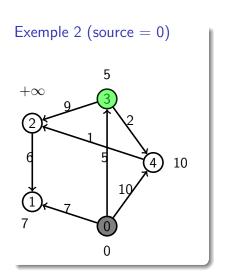


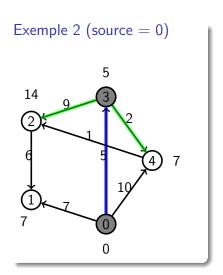
Correction de l'algorithme de Dijkstra



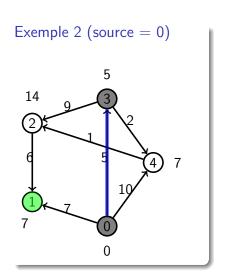


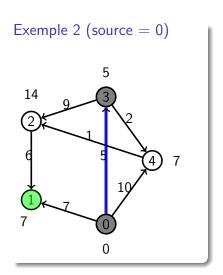
Correction de l'algorithme de Dijkstra



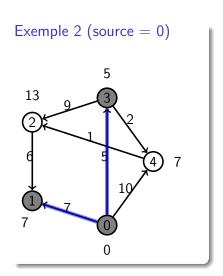


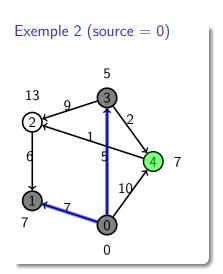
Correction de l'algorithme de Dijkstra

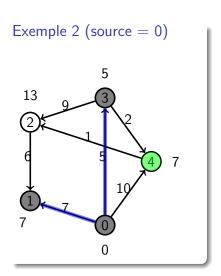


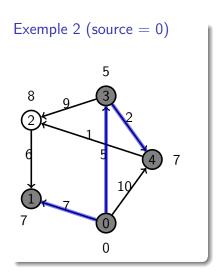


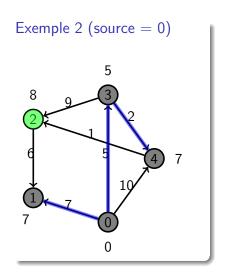
Correction de l'algorithme de Dijkstra

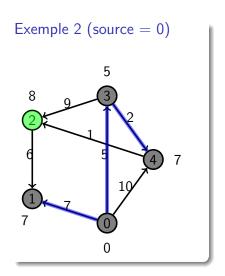


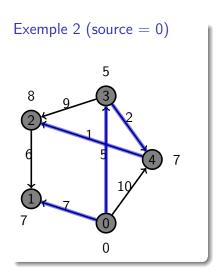






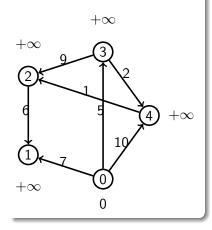






Exemple 2 (source = 0)

Graphes pondérés orientés



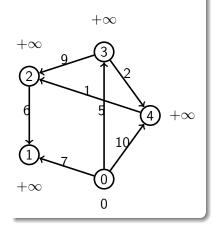
Les coulisses

distances:

étape	0	1	2	3	4
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$

Exemple 2 (source = 0)

Graphes pondérés orientés



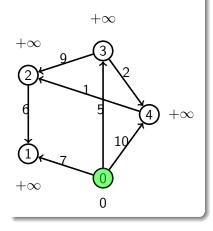
Les coulisses

distances:

étape	0	1	2	3	4
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$

parents:

Exemple 2 (source = 0)



Les coulisses

Correction de l'algorithme de Dijkstra

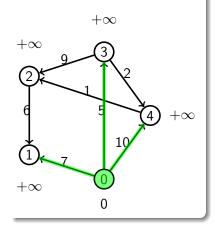
distances:

étape	0	1	2	3	4
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$

parents:

Exemple 2 (source = 0)

Graphes pondérés orientés

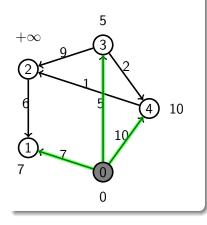


Les coulisses

distances:

étape	0	1	2	3	4
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$

Exemple 2 (source = 0)



Les coulisses

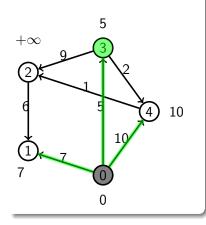
distances:

étape	0	1	2	3	4
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$
(b)	0	7	$+\infty$	5	10

0 1 2 3 4 parents : 0 0 0 0

Exemple 2 (source = 0)

Graphes pondérés orientés



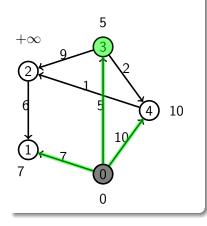
Les coulisses

distances:

étape	0	1	2	3	4
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$
(b)	0	7	$+\infty$	5	10

Exemple 2 (source = 0)

Graphes pondérés orientés



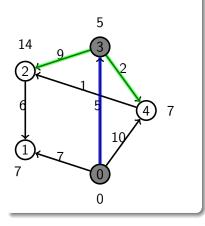
Les coulisses

distances:

étape	0	1	2	3	4
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$
(b)	0	7	$+\infty$	5	10

Exemple 2 (source = 0)

Graphes pondérés orientés

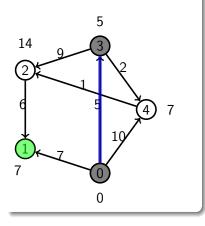


Les coulisses

distances:

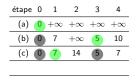
étape	0	1	2	3	4
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$
(b)	0	7	$+\infty$	5	10
(c)	0	7	14	5	7

Exemple 2 (source = 0)



Les coulisses

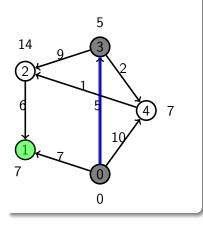
distances:



parents : $\begin{array}{c|c}
0 & 1 & 2 & 3 & 4 \\
\hline
0 & 3 & 0 & 3
\end{array}$

Exemple 2 (source = 0)

Graphes pondérés orientés



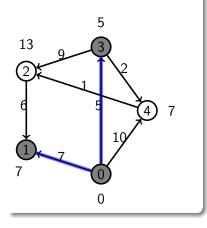
Les coulisses

distances:

étape	0	1	2	3	4
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$
(b)	0	7	$+\infty$	5	10
(c)	0	7	14	5	7

Exemple 2 (source = 0)

Graphes pondérés orientés

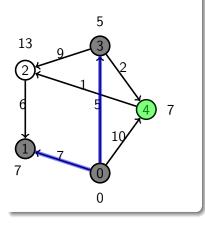


Les coulisses

distances:

étape	0	1	2	3	4
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$
(b)	0	7	$+\infty$	5	10
(c)	0	7	14	5	7
(d)	0	7	14	5	7

Exemple 2 (source = 0)



Les coulisses

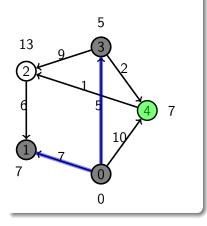
distances:

étape	0	1	2	3	4
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$
(b)	0	7	$+\infty$	5	10
(c)	0	7	14	5	7
(d)	0	7	14	5	7

parents : $0 1 2 3 4 \\ 0 3 0 3$

Exemple 2 (source = 0)

Graphes pondérés orientés



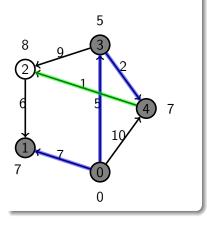
Les coulisses

distances:

étape	0	1	2	3	4
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$
(b)	0	7	$+\infty$	5	10
(c)	0	7	14	5	7
(d)	0	7	14	5	7

Exemple 2 (source = 0)

Graphes pondérés orientés



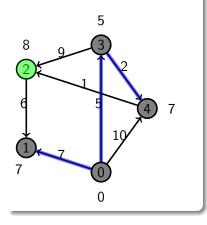
Les coulisses

distances:

1	2	3	4
$+\infty$	$+\infty$	$+\infty$	$+\infty$
7	$+\infty$	5	10
7	14	5	7
7	14	5	7
7	8	5	7
	+∞	$+\infty + \infty$ $7 + \infty$ $7 + 0$ $7 + 0$ $7 + 0$ $7 + 0$ $7 + 0$	+∞ +∞ +∞ 7 +∞ 5 7 14 5 7 14 5

Exemple 2 (source = 0)

Graphes pondérés orientés



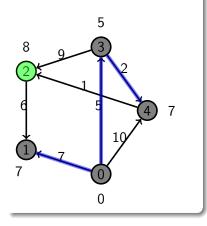
Les coulisses

distances:

étape 0	1	2	3	4
(a) 0	$+\infty$	$+\infty$	$+\infty$	$+\infty$
(b) 0	7	$+\infty$	5	10
(c) 0	7	14	5	7
(d) 0	7	14	5	7
(e) 0	7	8	5	7

Exemple 2 (source = 0)

Graphes pondérés orientés



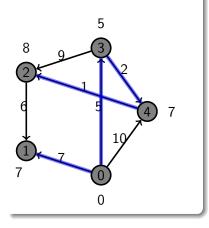
Les coulisses

distances:

étape 0	1	2	3	4
(a) 0	$+\infty$	$+\infty$	$+\infty$	$+\infty$
(b) 0	7	$+\infty$	5	10
(c) 0	7	14	5	7
(d) 0	7	14	5	7
(e) 0	7	8	5	7

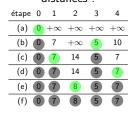
Exemple 2 (source = 0)

Graphes pondérés orientés



Les coulisses

distances:



Poids négatifs

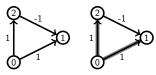
L'algorithme de Dijkstra ne fonctionne (en général) pas s'il y a des arcs de poids négatif.

Correction de l'algorithme de Dijkstra

S'il y a des cycles de coût négatif accessibles à partir de la source, il n'y a pas de plus courts chemins.

Même sans cycle de coût négatif, s'il y a des arcs de poids négatif, Dijsktra est faux.

Exemple 3 (plus courts chemins depuis 0)



1 la solution "rate" le plus court chemin $0 \rightarrow 2 \rightarrow 1$.

L'extraction du minimum peut se faire à l'aide d'un algorithme naïf :

```
Algorithme 1 : EXTRAIRESOMMETLEPLUSPROCHE(S, distances)
   Entrées : un ensemble S de sommets, la distance de chaque sommet
              de S
   Résultat: le sommet de S le plus proche est extrait et renvoyé.
 1 sommet \leftarrow NIL;
 2 distance_min \leftarrow +\infty;
 3 pour chaque candidat \in S faire
        si distances[candidat] < distance_min alors</pre>
             sommet \leftarrow candidat;
             distance_min \leftarrow distances[candidat];
 7 si sommet \neq NIL alors S \leftarrow S \setminus sommet ;
 8 renvoyer sommet;
```

8 renvoyer sommet;

Extraction du sommet le plus proche

L'extraction du minimum peut se faire à l'aide d'un algorithme naïf :

```
Algorithme 1 : EXTRAIRESOMMETLEPLUSPROCHE(S, distances)
   Entrées : un ensemble S de sommets, la distance de chaque sommet
              de S
   Résultat: le sommet de S le plus proche est extrait et renvoyé.
 1 sommet \leftarrow NIL;
 2 distance_min \leftarrow +\infty;
 3 pour chaque candidat \in S faire
        si distances[candidat] < distance_min alors</pre>
             sommet \leftarrow candidat;
             distance_min \leftarrow distances[candidat];
 7 si sommet \neq NIL alors S \leftarrow S \setminus sommet ;
```

Un tas comme serait plus efficace. Mais attention, ici, les poids des éléments changent en cours d'exécution!

L'algorithme de Dijkstra proprement dit

Algorithme 2 : DIJKSTRA(G, source)

```
Entrées : un graphe pondéré orienté G, un sommet source.
  Sortie : la longueur d'un plus court chemin de la source à chacun des
            sommets du graphe (+\infty pour les sommets non accessibles).
1 a_{\text{traiter}} \leftarrow G.\text{sommets()};
  distances \leftarrow tableau(G.nombre_sommets(), +\infty);
3 distances[source] \leftarrow 0;
  tant que a_traiter.pas_vide() faire
       u \leftarrow \text{ExtraireSommetLePlusProche}(a\_\text{traiter}, \text{distances});
       si u = NIL alors renvoyer distances ;
6
       pour chaque v \in G.successeurs(u) faire
            distances[v] \leftarrow min(distances[v], distances[u] + G.poids_arc(u, v)
8
              v));
9 renvoyer distances:
```

Correction de l'algorithme de Dijkstra

- On passe O(|V|) fois dans la boucle principale;
- Extraire chaque sommet coûte O(|S|) = O(|V|);

• On passe O(|V|) fois dans la boucle principale;

Correction de l'algorithme de Dijkstra

- Extraire chaque sommet coûte O(|S|) = O(|V|);
- On examine chaque arc une fois;

$$\Rightarrow O(|A| + |V|^2) = O(|V|^2).$$

- On passe O(|V|) fois dans la boucle principale;
- Extraire chaque sommet coûte O(|S|) = O(|V|);

Correction de l'algorithme de Dijkstra

- On examine chaque arc une fois; $\Rightarrow O(|A| + |V|^2) = O(|V|^2).$
- Une structure de tas adaptée permet de rabaisser la complexité à $O((|V| + |A|) \log |V|)$.

Graphes pondérés orientés

Soit T l'ensemble des sommets déjà traités, et :

- $\delta(s,t) = \text{la distance réelle de } s \text{ à } t$;
- distance(s,t)= la distance de s à t calculée à chaque étape de l'algorithme.

On a toujours distance(s, t) $\geq \delta(s, t)$.

Tous les plus courts chemins

- P_1 : pour tout sommet t de T (en particulier quand t entre dans T) on a distance $(s,t)=\delta(s,t)$.
- P_2 : pour toute sommet $t \notin T$, distance(s, t) est le coût d'un plus court chemin de s à t qui ne passe que par des sommets intermédiaires dans T.

Graphes pondérés orientés

- P_1 : pour tout sommet t de T (en particulier quand t entre dans T) on a $distance(s, t) = \delta(s, t)$.
- P_2 : pour toute sommet $t \notin T$, distance(s, t) est le coût d'un plus court chemin de s à t qui ne passe que par des sommets intermédiaires dans T.
- 1 cas de base : $T = \{s\}$, et distance $(s, s) = 0 = \delta(s, s)$. On a aussi P_2 avec la relaxation faite quand s rentre dans T.

Tous les plus courts chemins

- P_1 : pour tout sommet t de T (en particulier quand t entre dans T) on a distance $(s,t)=\delta(s,t)$.
- P_2 : pour toute sommet $t \notin T$, distance(s,t) est le coût d'un plus court chemin de s à t qui ne passe que par des sommets intermédiaires dans T.
- **1** cas de base : $T = \{s\}$, et distance $(s, s) = 0 = \delta(s, s)$. On a aussi P_2 avec la relaxation faite quand s rentre dans T.
- 2 induction:

- P_1 : pour tout sommet t de T (en particulier quand t entre dans T) on a distance $(s,t)=\delta(s,t)$.
- P_2 : pour toute sommet $t \notin T$, distance(s, t) est le coût d'un plus court chemin de s à t qui ne passe que par des sommets intermédiaires dans T.
- **1** cas de base : $T = \{s\}$, et distance $(s, s) = 0 = \delta(s, s)$. On a aussi P_2 avec la relaxation faite quand s rentre dans T.
- 2 induction:
 - hypothèses d'induction : P_1 et P_2

- P_1 : pour tout sommet t de T (en particulier quand t entre dans T) on a $distance(s, t) = \delta(s, t)$.
- P_2 : pour toute sommet $t \notin T$, distance(s, t) est le coût d'un plus court chemin de s à t qui ne passe que par des sommets intermédiaires dans T.
- 1 cas de base : $T = \{s\}$, et distance $(s, s) = 0 = \delta(s, s)$. On a aussi P_2 avec la relaxation faite quand s rentre dans T.
- 2 induction :
 - hypothèses d'induction : P₁ et P₂
 - à prouver : Soit $t \notin T$ le prochain sommet à traiter. On doit montrer que P_1 et P_2 sont vraies après traitement de t avec $T \cup \{t\}$.

- P_1 : pour tout sommet t de T (en particulier quand t entre dans T) on a distance $(s,t)=\delta(s,t)$.
- P_2 : pour toute sommet $t \notin T$, distance(s, t) est le coût d'un plus court chemin de s à t qui ne passe que par des sommets intermédiaires dans T.
- **1** cas de base : $T = \{s\}$, et distance $(s, s) = 0 = \delta(s, s)$. On a aussi P_2 avec la relaxation faite quand s rentre dans T.
- 2 induction:
 - hypothèses d'induction : P_1 et P_2
 - à prouver : Soit $t \notin T$ le prochain sommet à traiter. On doit montrer que P_1 et P_2 sont vraies après traitement de t avec $T \cup \{t\}$.
 - On prend un plus court chemin P de s à t de poids $\delta(s,t)$. Le premier sommet qui sort de T dans ce chemin est noté y.

0000000000000

Correction de l'algorithme de Dijkstra

Graphes pondérés orientés

$$\delta(s,t) \geq \delta(s,y)$$
 car les poids sont ≥ 0

$$\delta(s,t) \geq \delta(s,y)$$
 car les poids sont ≥ 0
 \geq distance (s,y) car on a P_2

$$\delta(s,t) \geq \delta(s,y)$$
 car les poids sont ≥ 0
 \geq distance (s,y) car on a P_2
 \geq distance (s,t) car t va rentrer dans T .

```
\delta(s,t) \geq \delta(s,y) car les poids sont \geq 0
        > distance(s, y) car on a P_2
        \geq distance(s, t) car t va rentrer dans T.
```

Donc $\delta(s,t) = \text{distance}(s,t)$ et P_1 est vraie pour $T \cup \{t\}$. Avec la relaxation faite lorsque t entre dans T, P_2 va rester vraie pour $T \cup \{t\}$.

Plus courts chemins à partir d'une source pour les graphes acycliques

Algorithme 3 : DIJKSTRAACYCLIQUE(G, source)

```
Entrées : un graphe pondéré orienté G acyclique, même avec des arcs
         de poids négatifs, un sommet source.
```

Sortie : la longueur d'un plus court chemin de la source à chacun des sommets du graphe ($+\infty$ pour les sommets non accessibles).

```
1 distances \leftarrow tableau(G.nombre_sommets(), +\infty);
```

- 2 distances[source] \leftarrow 0;
- pour chaque u dans un ordre topologique faire
- pour chaque $v \in G.successeurs(u)$ faire
- $distances[v] \leftarrow min(distances[v], distances[u] + G.poids_arc(u, v)$ 5 v));
- 6 renvoyer distances;

pour les graphes acycliques

Graphes pondérés orientés

La preuve et la même que pour Dijkstra. On utilise cette fois le fait que les sommets sont en ordre topologique.

• Un ordre topologique s'obtient en O(|V| + |A|) avec des listes d'adjacence ;

- Un ordre topologique s'obtient en O(|V| + |A|) avec des listes d'adjacence;
- On examine chaque arc une fois;
 - $\Rightarrow O(|A| + |V|).$

• En l'absence de poids négatifs, Dijkstra s'en sortait puisqu'il n'était pas nécessaire de revenir sur ses décisions;

Correction de l'algorithme de Dijkstra

000000000000000

Problèmes de Dijkstra

- En l'absence de poids négatifs, Dijkstra s'en sortait puisqu'il n'était pas nécessaire de revenir sur ses décisions;
- L'algorithme de Bellman-Ford règlera ce problème en examinant les arcs plusieurs fois.

• L'algorithme de Bellman-Ford recherche également des raccourcis entre les sommets;

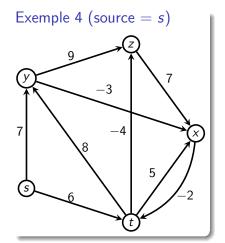
- L'algorithme de Bellman-Ford recherche également des raccourcis entre les sommets;
- Le fonctionnement est différent de celui de Dijkstra, qui cherchait des chemins moins coûteux de la source s à un sommet u en passant par un autre sommet v;

- L'algorithme de Bellman-Ford recherche également des raccourcis entre les sommets;
- Le fonctionnement est différent de celui de Dijkstra, qui cherchait des chemins moins coûteux de la source s à un sommet u en passant par un autre sommet v;
- Ici, on vérifie pour chaque arc (u, v) s'il existe un chemin moins coûteux de u à v;

L'algorithme de Bellman-Ford

- L'algorithme de Bellman-Ford recherche également des raccourcis entre les sommets;
- Le fonctionnement est différent de celui de Dijkstra, qui cherchait des chemins moins coûteux de la source s à un sommet u en passant par un autre sommet v;
- Ici, on vérifie pour chaque arc (u, v) s'il existe un chemin moins coûteux de u à v;
- On examine l'ensemble de **tous** les arcs |V| fois.

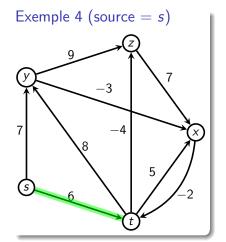
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étap	e	5	t	X	у	Z
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

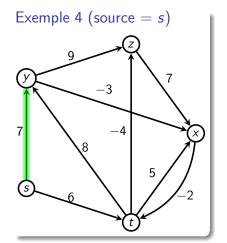


étape	S	t	X	у	Z
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$

Déroulement de l'algorithme de Bellman-Ford

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



Les coulisses

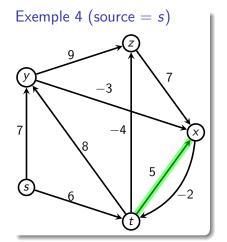
Correction de l'algorithme de Dijkstra

000000000000000

é	tape	s	t	X	у	Z
	(a)	0	6	$+\infty$	$+\infty$	$+\infty$

On examine les arcs dans l'ordre lexicographique :

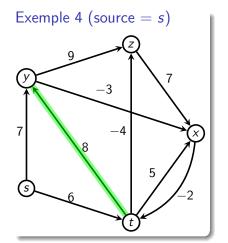
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	у	Z
(a)	0	6	$+\infty$	7	$+\infty$

On examine les arcs dans l'ordre lexicographique :

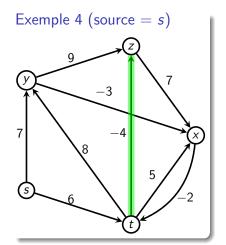
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	у	Z
(a)	0	6	11	7	$+\infty$

On examine les arcs dans l'ordre lexicographique :

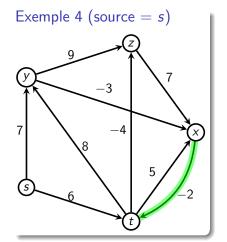
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	у	Z
(a)	0	6	11	7	$+\infty$

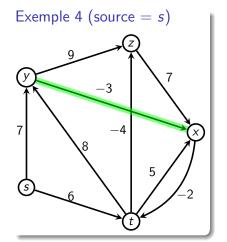
On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



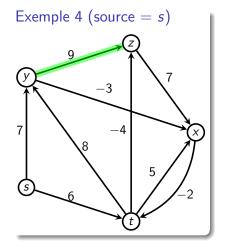
étape	s	t	X	y	Z
(a)	0	6	11	7	2

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	y	z
(a)	0	6	11	7	2

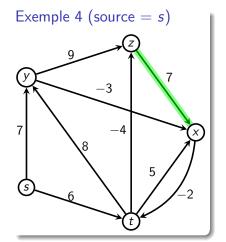
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	y	Z
(a)	0	6	4	7	2

On examine les arcs dans l'ordre lexicographique :

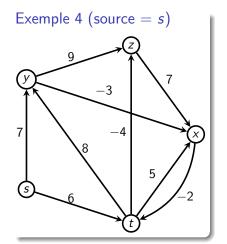
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	S	t	X	y	Z
(a)	0	6	4	7	2

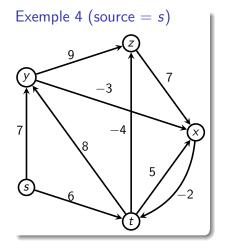
On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	y	Z
(a)	0	6	4	7	2

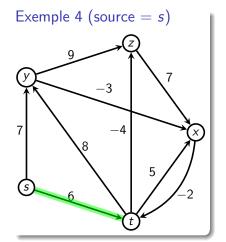
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	6	4	7	2

On examine les arcs dans l'ordre lexicographique :

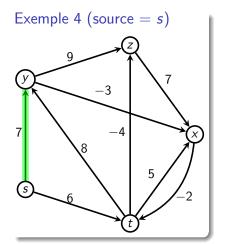
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	6	4	7	2

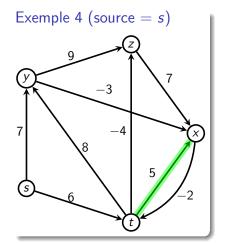
On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



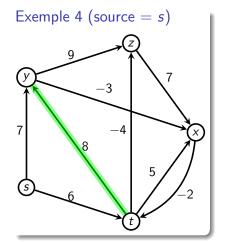
étape	s	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	6	4	7	2

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



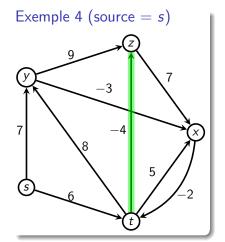
étape	s	t	X	у	z
(a)	0	6	4	7	2
(b)	0	6	4	7	2

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	6	4	7	2

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

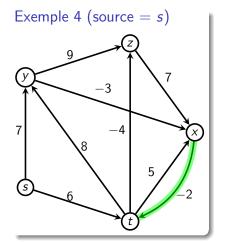


Graphes pondérés orientés

étape	s	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	6	4	7	2

On examine les arcs dans l'ordre lexicographique :

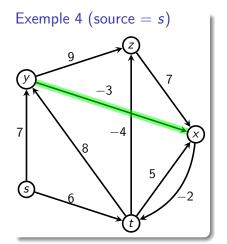
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	6	4	7	2

On examine les arcs dans l'ordre lexicographique :

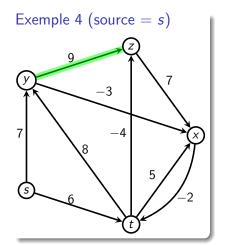
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	x	У	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

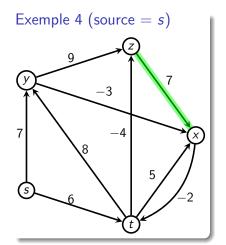
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	у	z
(a)	0	6	4	7	2
(b)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

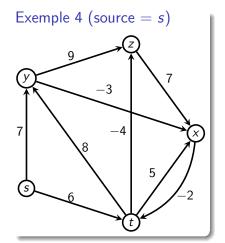
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	у	z
(a)	0	6	4	7	2
(b)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

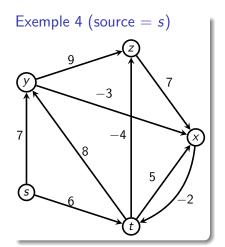
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

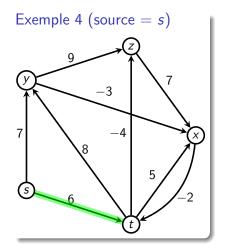
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

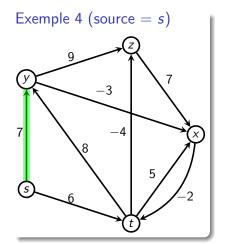
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	2
	(a)	(a) 0 (b) 0	(a) 0 6 (b) 0 2	(a) 0 6 4 (b) 0 2 4	(a) 0 6 4 7 (b) 0 2 4 7

On examine les arcs dans l'ordre lexicographique :

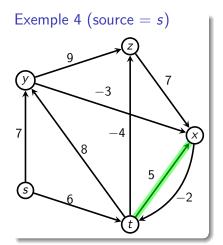
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

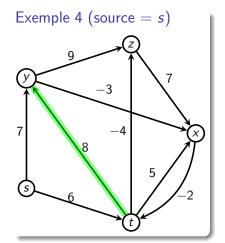
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	2

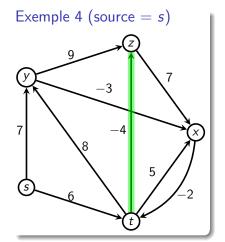
On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	у	z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	2

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

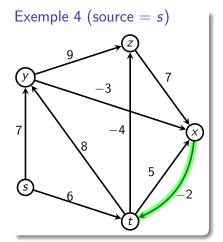


Graphes pondérés orientés

étape	s	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

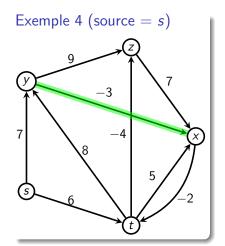


étape	s	t	X	У	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	-2

Déroulement de l'algorithme de Bellman-Ford

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

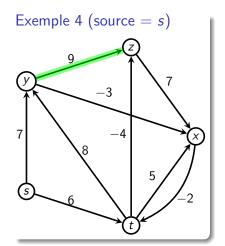


étape	S	t	X	У	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	-2
	(a) (b)	(a) 0 (b) 0	(a) 0 6 (b) 0 2	(a) 0 6 4 (b) 0 2 4	(a) 0 6 4 7 (b) 0 2 4 7

Déroulement de l'algorithme de Bellman-Ford

On examine les arcs dans l'ordre lexicographique :

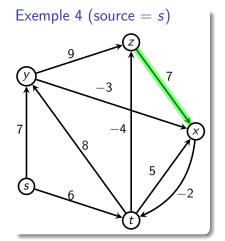
$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



étape	s	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	-2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

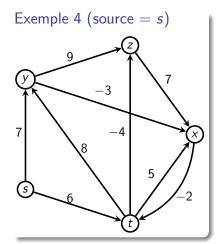


étape	S	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	-2
	(a)	(a) 0 (b) 0	(a) 0 6 (b) 0 2	(a) 0 6 4 (b) 0 2 4	(a) 0 6 4 7 (b) 0 2 4 7

Déroulement de l'algorithme de Bellman-Ford

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

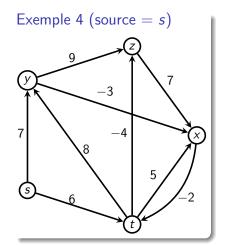


étape	S	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	-2
	(a)	(a) 0 (b) 0	(a) 0 6 (b) 0 2	(a) 0 6 4 (b) 0 2 4	(a) 0 6 4 7 (b) 0 2 4 7

Déroulement de l'algorithme de Bellman-Ford

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



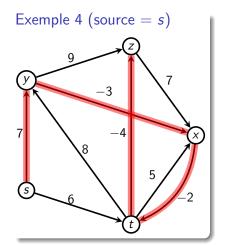
Les coulisses

étape	s	t	X	V	z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	-2

(les étapes suivantes ne changent plus rien)

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$



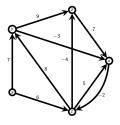
Graphes pondérés orientés

Les coulisses

étape	s	t	x	У	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	-2

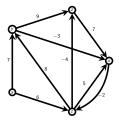
(les étapes suivantes ne changent plus rien)

En "pratique" (enfin, dans les exercices . . .)



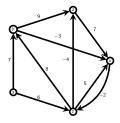
étape	s	t	X	у	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)

En "pratique" (enfin, dans les exercices . . .)



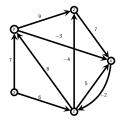
étape	s	t	X	y	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
1	0	6	$+\infty$	7	$+\infty$	s:(s,t),(s,y)

En "pratique" (enfin, dans les exercices . . .)

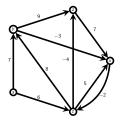


étape	s	t	×	у	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
1	0	6	$+\infty$	7	$+\infty$	s:(s,t),(s,y)
	0	6	11	7	2	t:(t,x),(t,y),(t,z)

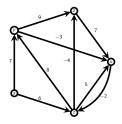
En "pratique" (enfin, dans les exercices . . .)



étape	s	t	X	y	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
1	0	6	$+\infty$	7	$+\infty$	s:(s,t),(s,y)
	0	6	11	7	2	t:(t,x),(t,y),(t,z)
	0	6	11	7	2	x:(x,t)



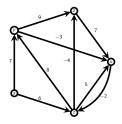
étape	s	t	x	у	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	+∞	+∞	(étape finale)
1	0	6	$+\infty$	7	+∞	s:(s,t),(s,y)
	0	6	11	7	2	t:(t,x),(t,y),(t,z)
	0	6	11	7	2	x:(x,t)
	0	6	4	7	2	y:(y,x),(y,z)



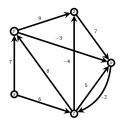
étape	s	t	X	у	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	+∞	(étape finale)
1	0	6	$+\infty$	7	+∞	s:(s,t),(s,y)
	0	6	11	7	2	t:(t,x),(t,y),(t,z)
	0	6	11	7	2	x:(x,t)
	0	6	4	7	2	y:(y,x),(y,z)
	0	6	4	7	2	z:(z,x)

En "pratique" (enfin, dans les exercices . . .)

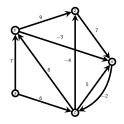
Graphes pondérés orientés



ape	s	t	X	y	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
1	0	6	$+\infty$	7	$+\infty$	s:(s,t),(s,y)
	0	6	11	7	2	t:(t,x),(t,y),(t,z)
	0	6	11	7	2	x:(x,t)
	0	6	4	7	2	y:(y,x),(y,z)
	0	6	4	7	2	z:(z,x)
2	0	2	4	7	2	(étape finale)
	0	0 0 1 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

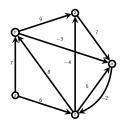


	étape	s	t	X	y	z	après traitement des arcs issus de
	0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
	1	0	6	$+\infty$	7	$+\infty$	s:(s,t),(s,y)
		0	6	11	7	2	t:(t,x),(t,y),(t,z)
		0	6	11	7	2	x:(x,t)
		0	6	4	7	2	y:(y,x),(y,z)
		0	6	4	7	2	z:(z,x)
-	2	0	2	4	7	2	(étape finale)
-	3	0	2	4	7	-2	(étape finale)
-							



étape	s	t	x	y	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
1	0	6	$+\infty$	7	$+\infty$	s:(s,t),(s,y)
	0	6	11	7	2	t:(t,x),(t,y),(t,z)
	0	6	11	7	2	x:(x,t)
	0	6	4	7	2	y:(y,x),(y,z)
	0	6	4	7	2	z:(z,x)
2	0	2	4	7	2	(étape finale)
3	0	2	4	7	-2	(étape finale)
4	0	2	4	7	-2	(étape finale)

En "pratique" (enfin, dans les exercices . . .)



étape	s	t	×	y	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
1	0	6	$+\infty$	7	+∞	s:(s,t),(s,y)
	0	6	11	7	2	t:(t,x),(t,y),(t,z)
	0	6	11	7	2	x:(x,t)
	0	6	4	7	2	y:(y,x),(y,z)
	0	6	4	7	2	z:(z,x)
2	0	2	4	7	2	(étape finale)
3	0	2	4	7	-2	(étape finale)
4	0	2	4	7	-2	(étape finale)
5	0	2	4	7	-2	(étape finale)

• Un cycle négatif C est un cycle tel que $\sum_{a \in A(C)} w(a) < 0$;

Correction de l'algorithme de Dijkstra

• Un **cycle négatif** C est un cycle tel que $\sum_{a \in A(C)} w(a) < 0$;

 Les poids négatifs ne posent pas problème à Bellman-Ford, mais les cycles négatifs oui — pour les mêmes raisons que Dijkstra;

- Un **cycle négatif** C est un cycle tel que $\sum_{a \in A(C)} w(a) < 0$;
- Les poids négatifs ne posent pas problème à Bellman-Ford, mais les cycles négatifs oui — pour les mêmes raisons que Dijkstra;
- L'algorithme de Bellman-Ford comprendra un morceau permettant de détecter la présence d'un cycle négatif;

• Chaque arc (u, v) a le potentiel d'améliorer le meilleur chemin actuel de s à v en passant par u;

- Chaque arc (u, v) a le potentiel d'améliorer le meilleur chemin actuel de s à v en passant par u;
- Pourquoi parcourir tous les arcs exactement |V| fois?

Intuitions sur Bellman-Ford

- Chaque arc (u, v) a le potentiel d'améliorer le meilleur chemin actuel de s à v en passant par u;
- Pourquoi parcourir tous les arcs exactement | V | fois ?
 - s'il existe un plus court chemin entre s et u, il existe un plus court chemin entre s et u qui contient au plus |V|-1 arcs (s'il n'y a pas de cycle de poids négatif);

- Chaque arc (u, v) a le potentiel d'améliorer le meilleur chemin actuel de s à v en passant par u:
- Pourquoi parcourir tous les arcs exactement |V| fois?
 - s'il existe un plus court chemin entre s et u, il existe un plus court chemin entre s et u qui contient au plus |V| - 1 arcs (s'il n'y a pas de cycle de poids négatif);
 - si on arrive à améliorer un chemin contenant le nombre maximal d'arcs, c'est forcément grâce à un cycle de poids négatif.

L'algorithme de Bellman-Ford

Algorithme 4 : BellmanFord(G, source)

Entrées : un graphe pondéré orienté G, un sommet source. Sortie : la longueur d'un plus court chemin de la source à chacun des sommets du graphe ($+\infty$ pour les sommets non accessibles), ou NIL si le graphe contient un cycle négatif accessible à partir de la source.

```
1 distances \leftarrow tableau(G.nombre_sommets(), +\infty);

2 distances[source] \leftarrow 0;

// parcourir chaque arc |V|-1 fois

3 pour i allant de 1 à G.nombre_sommets() -1 faire

4 | pour chaque (u, v, p) \in G.arcs() faire

5 | distances[v] \leftarrow min(distances[v], distances[u] + p);

// vérifier la présence d'un cycle négatif

6 pour chaque (u, v, p) \in G.arcs() faire

7 | si distances[v] > distances[u] + p alors renvoyer NIL;

8 renvoyer distances;
```

Complexité de l'algorithme de Bellman-Ford

• La complexité est assez simple à calculer :

- La complexité est assez simple à calculer :
 - on examine **tous** les arcs |V| fois;

- La complexité est assez simple à calculer :
 - on examine **tous** les arcs |V| fois;
 - tous les calculs sont en O(1).

- La complexité est assez simple à calculer :
 - on examine **tous** les arcs |V| fois;
 - tous les calculs sont en O(1).
- On a donc :

- La complexité est assez simple à calculer :
 - on examine **tous** les arcs |V| fois;
 - tous les calculs sont en O(1).
- On a donc :
 - du $O(|V|^3)$ pour une matrice d'adjacence;

- La complexité est assez simple à calculer :
 - on examine **tous** les arcs |V| fois;
 - tous les calculs sont en O(1).
- On a donc :
 - du $O(|V|^3)$ pour une matrice d'adjacence;
 - du O(|V||A|) pour une liste d'adjacence.

- La complexité est assez simple à calculer :
 - on examine **tous** les arcs |V| fois;
 - tous les calculs sont en O(1).
- On a donc :
 - du $O(|V|^3)$ pour une matrice d'adjacence;
 - du O(|V||A|) pour une liste d'adjacence.
- Remarque: on peut s'arrêter quand l'algorithme "se stabilise", donc quand les estimations ne subissent plus aucun changement.

Dijkstra vs. Bellman-Ford

Graphes pondérés orientés

• Quand utiliser Dijkstra?

Dijkstra vs. Bellman-Ford

- Quand utiliser Dijkstra?
 - quand tous les poids sont positifs ou nuls;

Correction de l'algorithme de Dijkstra

00000000000000

- Quand utiliser Dijkstra?
 - quand tous les poids sont positifs ou nuls;
 - sa complexité est meilleure que Bellman-Ford.

- Quand utiliser Dijkstra?
 - quand tous les poids sont positifs ou nuls;
 - sa complexité est meilleure que Bellman-Ford.

Correction de l'algorithme de Dijkstra

000000000000000

Quand utiliser Bellman-Ford?

Dijkstra vs. Bellman-Ford

- Quand utiliser Dijkstra?
 - quand tous les poids sont positifs ou nuls;
 - sa complexité est meilleure que Bellman-Ford.

Correction de l'algorithme de Dijkstra

00000000000000

- Quand utiliser Bellman-Ford?
 - quand le graphe est a des poids négatifs.

Dijkstra vs. Bellman-Ford

- Quand utiliser Dijkstra?
 - quand tous les poids sont positifs ou nuls;
 - sa complexité est meilleure que Bellman-Ford.
- Quand utiliser Bellman-Ford?
 - quand le graphe est a des poids négatifs.
- S'il y a des cycles négatifs accessibles à partir de la source, il n'v a pas de plus courts chemins à partir de la source.

• Jusqu'ici, on s'est intéressés au calcul de tous les plus courts chemins issus d'une source donnée;

- Jusqu'ici, on s'est intéressés au calcul de tous les plus courts chemins issus d'une source donnée;
- Comment faire pour calculer les plus courts chemins entre chaque paire de sommets?

- Jusqu'ici, on s'est intéressés au calcul de tous les plus courts chemins issus d'une source donnée;
- Comment faire pour calculer les plus courts chemins entre chaque paire de sommets?
- On pourrait lancer | V | fois Dijkstra ou Bellman-Ford;

 Jusqu'ici, on s'est intéressés au calcul de tous les plus courts chemins issus d'une source donnée:

- Comment faire pour calculer les plus courts chemins entre chaque paire de sommets?
- On pourrait lancer |V| fois Dijkstra ou Bellman-Ford;
- L'algorithme de Floyd-Warshall permet d'obtenir le résultat voulu avec une meilleure complexité.

• L'algorithme de Floyd-Warshall procède comme suit :

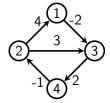
- L'algorithme de Floyd-Warshall procède comme suit :
 - au départ, les plus courts chemins entre chaque paire de sommets sont les poids des arcs les reliant (ou $+\infty$);

- L'algorithme de Floyd-Warshall procède comme suit :
 - au départ, les plus courts chemins entre chaque paire de sommets sont les poids des arcs les reliant (ou $+\infty$);
 - à la $k^{\text{ème}}$ itération, on cherche à améliorer le chemin $u \rightsquigarrow v$ en s'autorisant les sommets intermédiaires d'indice 0, 1, 2, \dots , k pour un certain k fixé.

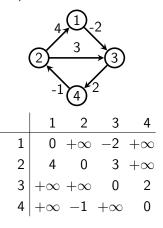
- L'algorithme de Floyd-Warshall procède comme suit :
 - au départ, les plus courts chemins entre chaque paire de sommets sont les poids des arcs les reliant (ou $+\infty$);
 - à la k^{ème} itération, on cherche à améliorer le chemin u ~ v en s'autorisant les sommets intermédiaires d'indice 0, 1, 2, ..., k pour un certain k fixé.
- Remarque: la seule modification à l'étape k consiste à vérifier si le chemin u \sim k \sim v est plus court que le chemin u \sim v, puisque les sommets d'indices inférieurs ont déjà été utilisés.

Exemple 5

Graphes pondérés orientés



Exemple 5



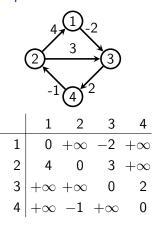
matrice de distances

Les chemins

Correction de l'algorithme de Dijkstra

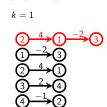
k = 0

Exemple 5

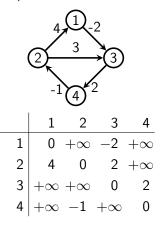


matrice de distances

Les chemins

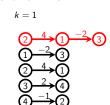


Exemple 5

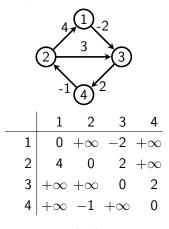


matrice de distances

Les chemins

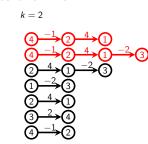


Exemple 5

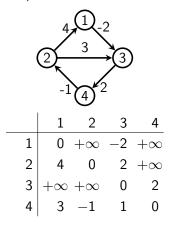


matrice de distances

Les chemins

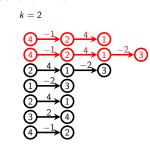


Exemple 5



matrice de distances

Les chemins

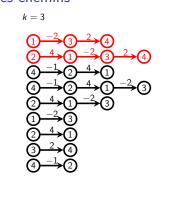


Exemple 5

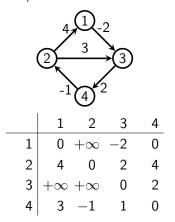


matrice de distances

Les chemins

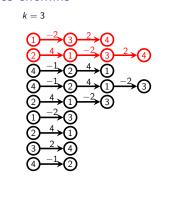


Exemple 5

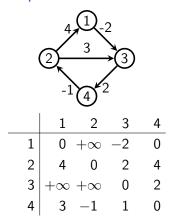


matrice de distances

Les chemins

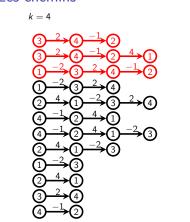


Exemple 5

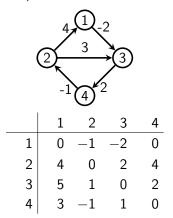


matrice de distances

Les chemins

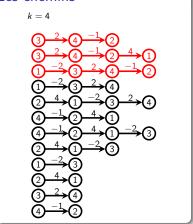


Exemple 5



matrice de distances

Les chemins



L'algorithme de Floyd-Warshall

Si seules les distances nous intéressent, l'algorithme est assez simple à implémenter, car peu d'accès au graphe sont nécessaires.

Algorithme 5 : FLOYDWARSHALL(G)

Entrées: un graphe orienté pondéré *G*.

```
Sortie: les distances entre toute paire de sommets du graphe.
1 n \leftarrow G.nombre_sommets();
2 distances \leftarrow matrice(n, n, +\infty);
3 pour i allant de 0 à n-1 faire
       distances[i][i] \leftarrow 0;
5 pour chaque (u, v, p) \in G.arcs() faire
       distances[u][v] \leftarrow p;
   // chercher les améliorations en passant par k = 0, 1, 2, ...
7 pour k allant de 0 à n-1 faire
       pour i allant de 0 à n-1 faire
8
            pour i allant de 0 à n-1 faire
 9
                 distances[i][j] \leftarrow min(distances[i][j],
10
                  distances[i][k]+distances[k][i]);
11 renvoyer distances;
```

• La complexité est assez simple à calculer :

- La complexité est assez simple à calculer :
 - on accède une fois à tous les arcs;

- La complexité est assez simple à calculer :
 - on accède une fois à tous les arcs;
 - on a trois boucles imbriquées indépendantes comportant chacune |V| itérations ;

Complexité de l'algorithme de Floyd-Warshall

- La complexité est assez simple à calculer :
 - on accède une fois à tous les arcs;
 - on a trois boucles imbriquées indépendantes comportant chacune |V| itérations ;
 - les opérations sur la matrice de distances se font en O(1);

- La complexité est assez simple à calculer :
 - on accède une fois à tous les arcs;
 - on a trois boucles imbriquées indépendantes comportant chacune |V| itérations;
 - les opérations sur la matrice de distances se font en O(1);
- \Rightarrow total : $O(|V|^3)$;

- La complexité est assez simple à calculer :
 - on accède une fois à tous les arcs;
 - on a trois boucles imbriquées indépendantes comportant chacune |V| itérations;
 - les opérations sur la matrice de distances se font en O(1);
- \Rightarrow total : $O(|V|^3)$;
- Dans ce cas précis, la représentation du graphe importe peu : qu'on obtienne les arcs en $O(|V|^2)$ (matrice) ou en O(|A|) (listes), c'est le $O(|V|^3)$ qui domine;

Correction de l'algorithme de Floyd-Warshall

• À la fin de l'étape k, distances[u][v] contient le poids d'un plus court chemin de u à v dont les sommets intermédiaires ont des numéros entre 0 et k.

- À la fin de l'étape k, distances[u][v] contient le poids d'un plus court chemin de u à v dont les sommets intermédiaires ont des numéros entre 0 et k.
 - En effet supposons que ce soit vrai par récurrence jusqu'à l'étape k-1. Soit P un plus court chemin de u à v dont les sommets intermédiaires ont des numéros entre 0 et k

- À la fin de l'étape k, distances[u][v] contient le poids d'un plus court chemin de u à v dont les sommets intermédiaires ont des numéros entre 0 et k.
 - En effet supposons que ce soit vrai par récurrence jusqu'à l'étape k-1. Soit P un plus court chemin de u à v dont les sommets intermédiaires ont des numéros entre 0 et k.
 - Si P passe par k, $P = u \rightsquigarrow k \rightsquigarrow k \cdots \rightsquigarrow k \rightsquigarrow v$, avec les numéros intermédiaires de chaque troncon entre 0 et k-1.

Correction de l'algorithme de Floyd-Warshall

- À la fin de l'étape k, distances[u][v] contient le poids d'un plus court chemin de u à v dont les sommets intermédiaires ont des numéros entre 0 et k.
 - En effet supposons que ce soit vrai par récurrence jusqu'à l'étape k - 1. Soit P un plus court chemin de u à v dont les sommets intermédiaires ont des numéros entre 0 et k.
 - Si P passe par k, P = u → k → k ··· → k → v, avec les numéros intermédiaires de chaque tronçon entre 0 et k − 1.
 - Comme il n'existe pas de cycle de poids négatif, on coupe dans P les morceaux allant de k à k pour avoir un autre plus court chemin P' qui va de u à k avec des sommets intermédiaires dans 0 et k 1 puis de k à v avec des sommets intermédiaires dans 0 et k 1. Son poids est donc distances_etape_k 1[u][k] + distances_etape_k 1[k][v].

Correction de l'algorithme de Floyd-Warshall

- À la fin de l'étape k, distances[u][v] contient le poids d'un plus court chemin de u à v dont les sommets intermédiaires ont des numéros entre 0 et k.
 - En effet supposons que ce soit vrai par récurrence jusqu'à l'étape k-1. Soit P un plus court chemin de u à v dont les sommets intermédiaires ont des numéros entre 0 et k
 - Si P passe par k, $P = u \rightsquigarrow k \rightsquigarrow k \cdots \rightsquigarrow k \rightsquigarrow v$, avec les numéros intermédiaires de chaque troncon entre 0 et k-1.
 - Comme il n'existe pas de cycle de poids négatif, on coupe dans P les morceaux allant de k à k pour avoir un autre plus court chemin P' qui va de u à k avec des sommets intermédiaires dans 0 et k-1 puis de k à v avec des sommets intermédiaires dans 0 et k-1. Son poids est donc distances_etape_ $k - 1[u][k] + distances_etape_k - 1[k][v]$.
 - Si P ne passe pas par k, son poids est distances_etape_k - 1[u][v].

Correction de l'algorithme de Floyd-Warshall suite

• Si les sommets sont numérotés de 0 à n-1, à la fin distances [u][v] contient donc le poids d'un plus court chemin de u à v.