Sorting Genomes by Prefix Double-Cut-and-Joins

Guillaume Fertin Géraldine Jean Anthony Labarre

March 23rd, 2023

Genome rearrangements for permutations

- (Signed) permutations model duplication-free genomes with the same contents;
- The actual numbering is irrelevant, so we assume either genome is the identity $\mathrm{Id}=\langle 12 \cdots n\rangle$;

Genome rearrangements for permutations

- (Signed) permutations model duplication-free genomes with the same contents;
- The actual numbering is irrelevant, so we assume either genome is the identity $\mathrm{Id}=\langle 12 \cdots n\rangle$;
- We aim to reconstruct evolutionary scenarios between species;

Genome rearrangements for permutations

- (Signed) permutations model duplication-free genomes with the same contents;
- The actual numbering is irrelevant, so we assume either genome is the identity $\mathrm{Id}=\langle 12 \cdots n\rangle$;
- We aim to reconstruct evolutionary scenarios between species;

GENOME SORTING (PERMUTATIONS)
Input: a (signed) permutation π, a set S of (per)mutations;
Goal: find a shortest sorting sequence of elements of S for π. (the length of that sequence is the distance of π)

Example (disregarding / considering gene orientation)

Modelling genomes

A more unified treatment is provided by:
(1) unsigned genomes: paths on $\{0,1,2, \ldots, n+1\}$;
(2) signed genomes: perfect matchings on $\{0,1,2, \ldots, 2 n+1\}$;

Example (from permutations to genomes)

Modelling genomes

A more unified treatment is provided by:
(1) unsigned genomes: paths on $\{0,1,2, \ldots, n+1\}$;
(2) signed genomes: perfect matchings on $\{0,1,2, \ldots, 2 n+1\}$;

Example (from permutations to genomes)

Modelling genomes

A more unified treatment is provided by:
(1) unsigned genomes: paths on $\{0,1,2, \ldots, n+1\}$;
(2) signed genomes: perfect matchings on $\{0,1,2, \ldots, 2 n+1\}$;

Example (from permutations to genomes)

Modelling genomes

A more unified treatment is provided by:
(1) unsigned genomes: paths on $\{0,1,2, \ldots, n+1\}$;
(2) signed genomes: perfect matchings on $\{0,1,2, \ldots, 2 n+1\}$;

Example (from permutations to genomes)

$x<0 \mapsto(2|x|, 2|x|-1) ; \quad x>0 \mapsto(2|x|-1,2|x|) ;$

Modelling genomes

A more unified treatment is provided by:
(1) unsigned genomes: paths on $\{0,1,2, \ldots, n+1\}$;
(2) signed genomes: perfect matchings on $\{0,1,2, \ldots, 2 n+1\}$;

Example (from permutations to genomes)

$$
\begin{array}{|ccccccccccc}
-5\langle & \\
\hline
\end{array}
$$

$$
x<0 \mapsto(2|x|, 2|x|-1) ; \quad x>0 \mapsto(2|x|-1,2|x|)
$$

Modelling genomes

A more unified treatment is provided by:
(1) unsigned genomes: paths on $\{0,1,2, \ldots, n+1\}$;
(2) signed genomes: perfect matchings on $\{0,1,2, \ldots, 2 n+1\}$;

Example (from permutations to genomes)

$$
\begin{aligned}
& x<0 \mapsto(2|x|, 2|x|-1) ; \quad x>0 \mapsto(2|x|-1,2|x|) ;
\end{aligned}
$$

The double cut-and-join (DCJ) operation

A double cut-and-join (DCJ) removes two edges $\{u, v\}$ and $\{w, x\}$ from a graph, then connects the four endpoints in one of two ways.

Example

The graph might be directed, belong to a particular class, ... which may restrict our options for reconnecting the endpoints (see examples later on).

DCJs in a biological setting

- DCJs generalise several well-studied mutations, e.g.:
- transpositions;

3 1 54 $26 \rightarrow 345$ 1 26

- reversals; $315426 \rightarrow 324516$
- signed reversals;
- block-transpositions;
- block-interchanges;

315426 5 4451126$315426 \rightarrow 324516$	
$3-15$	$-426 \rightarrow 3-24-516$
	315426 $\rightarrow 342156$
	$315426 \rightarrow 326415$

DCJs in a biological setting

- DCJs generalise several well-studied mutations, e.g.:
- transpositions;
- reversals;
- signed reversals;

$$
\begin{array}{r}
315426 \rightarrow 345126 \\
315426 \rightarrow 324516 \\
3-15-426 \rightarrow 3-24-516 \\
\hline 3 \boxed{15} 46 \rightarrow 342156 \\
3 \boxed{1546} \rightarrow 326415
\end{array}
$$

- block-transpositions;
- block-interchanges;
- Sorting genomes by DCJs is:
- in P in the signed case [7];
- NP-hard in the unsigned case [5];

The prefix constraint

- We study prefix DCJs: one of the cut edges must be incident with 0 ;
- The constraint has no biological relevance: it originates from interconnection network design;
- Theoretical interest: many "unrestricted" problems remain open under the prefix constraint;

Results

We obtain:

- new lower bounds for sorting by prefix reversals or DCJs (signed or unsigned);
- a polynomial time algorithm for sorting by signed prefix DCJs;
- a 3/2-approximation for sorting by unsigned prefix DCJs;

To the best of our knowledge, this is the first $(2-\varepsilon)$-approximation for a prefix sorting problem not known to be in P .

Mimicking other rearrangements using DCJs

Algebraic transpositions as DCJs

Let π be a permutation and $\Gamma(\pi)$ be its graph; i.e., the cycles of π are exactly those of $\Gamma(\pi)$.

Example
Let us compute $(1,2,3)(4,5,6)=(1,4) \circ(1,2,3,4,5,6)$.

Algebraic transpositions as DCJs

Let π be a permutation and $\Gamma(\pi)$ be its graph; i.e., the cycles of π are exactly those of $\Gamma(\pi)$.

Example
Let us compute $(1,2,3)(4,5,6)=(1,4) \circ(1,2,3,4,5,6)$.

We must obtain a collection of cycles, so the red option is invalid.

Algebraic transpositions as DCJs

Let π be a permutation and $\Gamma(\pi)$ be its graph; i.e., the cycles of π are exactly those of $\Gamma(\pi)$.

Example
Let us compute $(1,2,3)(4,5,6)=(1,4) \circ(1,2,3,4,5,6)$.

We must obtain a collection of cycles, so the red option is invalid.

Reversals as DCJs

Viewing permutations of $\{1,2, \ldots, n\}$ as paths on $\{0,1,2 \ldots, n, n+1\}$ allows us to express reversals as DCJs.

Example

Reversals as DCJs

Viewing permutations of $\{1,2, \ldots, n\}$ as paths on $\{0,1,2 \ldots, n, n+1\}$ allows us to express reversals as DCJs.

Example

Reversals as DCJs

Viewing permutations of $\{1,2, \ldots, n\}$ as paths on $\{0,1,2 \ldots, n, n+1\}$ allows us to express reversals as DCJs.

Example

We must obtain a path, so the red option is forbidden.

Reversals as DCJs

Viewing permutations of $\{1,2, \ldots, n\}$ as paths on $\{0,1,2 \ldots, n, n+1\}$ allows us to express reversals as DCJs.

Example

We must obtain a path, so the red option is forbidden.

Block-transpositions as DCJs

We can also simulate block-transpositions using two DCJs.
Example

Block-transpositions as DCJs

We can also simulate block-transpositions using two DCJs.
Example

Block-transpositions as DCJs

We can also simulate block-transpositions using two DCJs.
Example

Block-transpositions as DCJs

We can also simulate block-transpositions using two DCJs.
Example

Signed reversals as DCJs

Likewise, we can represent signed permutations and mimick signed reversals using DCJs.

Example

Signed reversals as DCJs

Likewise, we can represent signed permutations and mimick signed reversals using DCJs.

Example

Signed reversals as DCJs

Likewise, we can represent signed permutations and mimick signed reversals using DCJs.

Example

Results

Preliminary results

Theorem (Cayley distance)
Sorting any permutation π in S_{n} requires $n-c(\pi)$ transpositions.

Example

Preliminary results

Theorem (Cayley distance)
Sorting any permutation π in S_{n} requires $n-c(\pi)$ transpositions.
Theorem ("Prefix" Cayley distance)
[1] For any permutation π in S_{n}, the number of prefix transpositions required to sort π is exactly $\quad\left(c_{1}(\pi)=\right.$ number of trivial cycles)

$$
n+c(\pi)-2 c_{1}(\pi)- \begin{cases}0 & \text { if } \pi_{1}=1 \\ 2 & \text { otherwise }\end{cases}
$$

Example

Preliminary results

Theorem (Cayley distance)
Sorting any permutation π in S_{n} requires $n-c(\pi)$ transpositions.
Theorem ("Prefix" Cayley distance)
[1] For any permutation π in S_{n}, the number of prefix transpositions required to sort π is exactly $\quad\left(c_{1}(\pi)=\right.$ number of trivial cycles)

$$
n+c(\pi)-2 c_{1}(\pi)- \begin{cases}0 & \text { if } \pi_{1}=1 \\ 2 & \text { otherwise }\end{cases}
$$

Intuition

Example

Preliminary results

Theorem (Cayley distance)
Sorting any permutation π in S_{n} requires $n-c(\pi)$ transpositions.
Theorem ("Prefix" Cayley distance)
[1] For any permutation π in S_{n}, the number of prefix transpositions required to sort π is exactly $\quad\left(c_{1}(\pi)=\right.$ number of trivial cycles)

$$
n+c(\pi)-2 c_{1}(\pi)- \begin{cases}0 & \text { if } \pi_{1}=1 \\ 2 & \text { otherwise }\end{cases}
$$

Intuition

- we can only split the cycle that contains π_{1};

Example

Preliminary results

Theorem (Cayley distance)
Sorting any permutation π in S_{n} requires $n-c(\pi)$ transpositions.
Theorem ("Prefix" Cayley distance)
[1] For any permutation π in S_{n}, the number of prefix transpositions required to sort π is exactly $\quad\left(c_{1}(\pi)=\right.$ number of trivial cycles)

$$
n+c(\pi)-2 c_{1}(\pi)- \begin{cases}0 & \text { if } \pi_{1}=1 \\ 2 & \text { otherwise }\end{cases}
$$

Intuition

- we can only split the cycle that contains π_{1};
- if $\pi_{1}=1$ but π is not sorted, we must waste one operation to access another nontrivial cycle.

Example

Preliminary results

Theorem (Cayley distance)
Sorting any permutation π in S_{n} requires $n-c(\pi)$ transpositions.
Theorem ("Prefix" Cayley distance)
[1] For any permutation π in S_{n}, the number of prefix transpositions required to sort π is exactly $\quad\left(c_{1}(\pi)=\right.$ number of trivial cycles)

$$
n+c(\pi)-2 c_{1}(\pi)- \begin{cases}0 & \text { if } \pi_{1}=1 \\ 2 & \text { otherwise }\end{cases}
$$

Intuition

- we can only split the cycle that contains π_{1};
- if $\pi_{1}=1$ but π is not sorted, we must waste one operation to access another nontrivial cycle.

Example

Preliminary results

Theorem (Cayley distance)
Sorting any permutation π in S_{n} requires $n-c(\pi)$ transpositions.
Theorem ("Prefix" Cayley distance)
[1] For any permutation π in S_{n}, the number of prefix transpositions required to sort π is exactly $\quad\left(c_{1}(\pi)=\right.$ number of trivial cycles)

$$
n+c(\pi)-2 c_{1}(\pi)- \begin{cases}0 & \text { if } \pi_{1}=1 \\ 2 & \text { otherwise }\end{cases}
$$

Intuition

- we can only split the cycle that contains π_{1};
- if $\pi_{1}=1$ but π is not sorted, we must waste one operation to access another nontrivial cycle.

Example

$(2,4)$

Preliminary results

Theorem (Cayley distance)
Sorting any permutation π in S_{n} requires $n-c(\pi)$ transpositions.
Theorem ("Prefix" Cayley distance)
[1] For any permutation π in S_{n}, the number of prefix transpositions required to sort π is exactly $\quad\left(c_{1}(\pi)=\right.$ number of trivial cycles)

$$
n+c(\pi)-2 c_{1}(\pi)- \begin{cases}0 & \text { if } \pi_{1}=1 \\ 2 & \text { otherwise }\end{cases}
$$

Intuition

- we can only split the cycle that contains π_{1};
- if $\pi_{1}=1$ but π is not sorted, we must waste one operation to access another nontrivial cycle.

Example

$(2,4)$

Approach

- As we have seen, (prefix) transpositions are (prefix) DCJs;
- Strategy:
- find "the right graph" representation for pairs of genomes, depending on the mutations we want to use;
- rely on the prefix Cayley distance to obtain bounds based on that graph;

Signed prefix DCJs

- A signed genome is a perfect matching G over $\{0,1, \ldots, 2 n+1\}$;
- We want to obtain Id $=\{\{0,1\},\{2,3\}, \ldots,\{2 n, 2 n+1\}\}$;

Example
G:
Id:

Signed prefix DCJs

- A signed genome is a perfect matching G over $\{0,1, \ldots, 2 n+1\}$;
- We want to obtain Id $=\{\{0,1\},\{2,3\}, \ldots,\{2 n, 2 n+1\}\}$;
- The breakpoint graph $B G(G)$ is the union of G and $I d$;

Example
G :
Id:

$B G(G)$:

Signed prefix DCJs

- A signed genome is a perfect matching G over $\{0,1, \ldots, 2 n+1\}$;
- We want to obtain Id $=\{\{0,1\},\{2,3\}, \ldots,\{2 n, 2 n+1\}\}$;
- The breakpoint graph $B G(G)$ is the union of G and Id;

Example

Every vertex has degree $2 \Rightarrow$ collection of cycles.

Signed prefix DCJs

- Prefix DCJs have the same effect on $B G(G)$ as on the cycles of a permutation; therefore:

Signed prefix DCJs

- Prefix DCJs have the same effect on $B G(G)$ as on the cycles of a permutation; therefore:

Theorem
For any signed genome G, we have

$$
\operatorname{psdcj}(G) \geq n+1+c(B G(G))-2 c_{1}(B G(G))- \begin{cases}0 & \text { if }\{0,1\} \in G \\ 2 & \text { otherwise }\end{cases}
$$

Signed prefix DCJs

- Prefix DCJs have the same effect on $B G(G)$ as on the cycles of a permutation; therefore:

Theorem
For any signed genome G, we have

$$
\operatorname{psdcj}(G) \geq n+1+c(B G(G))-2 c_{1}(B G(G))- \begin{cases}0 & \text { if }\{0,1\} \in G \\ 2 & \text { otherwise }\end{cases}
$$

Example
With G as in the previous slide:

$$
B G(G):
$$

we have $\operatorname{psdcj}(G) \geq 6+3-2 \times 2-2=3$.

Sorting by signed prefix DCJs is in P

Algorithm outline
Until $G=$ Id, check edge $\{0, v\} \in G$:

Example

Sorting by signed prefix DCJs is in P

Algorithm outline
Until $G=$ Id, check edge $\{0, v\} \in G$:
(1) if $v \neq 1$: connect v to its "grey neighbour" in Id;

Example

Sorting by signed prefix DCJs is in P

Algorithm outline
Until $G=$ Id, check edge $\{0, v\} \in G$:
(1) if $v \neq 1$: connect v to its "grey neighbour" in Id;

Example

Sorting by signed prefix DCJs is in P

Algorithm outline
Until $G=$ Id, check edge $\{0, v\} \in G$:
(1) if $v \neq 1$: connect v to its "grey neighbour" in Id;

Example

Sorting by signed prefix DCJs is in P

Algorithm outline
Until $G=$ Id, check edge $\{0, v\} \in G$:
(1) if $v \neq 1$: connect v to its "grey neighbour" in Id;
(2) otherwise $v=1$: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Example

Sorting by signed prefix DCJs is in P

Algorithm outline
Until $G=$ Id, check edge $\{0, v\} \in G$:
(1) if $v \neq 1$: connect v to its "grey neighbour" in Id;
(2) otherwise $v=1$: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Example

Sorting by signed prefix DCJs is in P

Algorithm outline
Until $G=$ Id, check edge $\{0, v\} \in G$:
(1) if $v \neq 1$: connect v to its "grey neighbour" in Id;
(2) otherwise $v=1$: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Example

Sorting by signed prefix DCJs is in P

Algorithm outline
Until $G=$ Id, check edge $\{0, v\} \in G$:
(1) if $v \neq 1$: connect v to its "grey neighbour" in Id;
(2) otherwise $v=1$: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Example

Sorting by signed prefix DCJs is in P

Algorithm outline
Until $G=I d$, check edge $\{0, v\} \in G$:
(1) if $v \neq 1$: connect v to its "grey neighbour" in Id;
(2) otherwise $v=1$: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Example

Sorting by signed prefix DCJs is in P

Algorithm outline
Until $G=I d$, check edge $\{0, v\} \in G$:
(1) if $v \neq 1$: connect v to its "grey neighbour" in Id;
(2) otherwise $v=1$: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Example

Sorting by signed prefix DCJs is in P

Algorithm outline
Until $G=I d$, check edge $\{0, v\} \in G$:
(1) if $v \neq 1$: connect v to its "grey neighbour" in Id;
(2) otherwise $v=1$: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Example

Sorting by signed prefix DCJs is in P

Algorithm outline
Until $G=I d$, check edge $\{0, v\} \in G$:
(1) if $v \neq 1$: connect v to its "grey neighbour" in Id;
(2) otherwise $v=1$: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Every operation decreases the value of our lower bound by $1 \Rightarrow$ algorithm is optimal.

Example

Signed prefix reversals

- Signed prefix reversals are signed prefix DCJs that must preserve an additional structural constraint (details omitted);
\checkmark therefore, $\operatorname{psrd}(G) \geq \operatorname{psdcj}(G)$;
\times but previous algorithm cannot be used;

Unsigned prefix DCJs

- An unsigned genome is a path G over $\{0,1, \ldots, n+1\}$;
- We want to obtain the path $\operatorname{Id}=(0,1, \ldots, n+1)$;

Example
G:

Id:

- An unsigned version of the breakpoint graph yields a similar lower bound to the signed case (no time for details);

A lower bound for sorting by unsigned prefix DCJs

Theorem
For any genome G, we have:

$$
\begin{aligned}
\operatorname{pdcj}(G) & \geq n+1+c^{*}(U B G(G))-2 c_{1}^{*}(U B G(G)) \\
& - \begin{cases}0 & \text { if }\{0,1\} \in G \text { and }\{1,2\} \in G, \\
1 & \text { if }\{0,1\} \in G \text { and }\{1,2\} \notin G, \\
2 & \text { otherwise. }\end{cases}
\end{aligned}
$$

where $c^{*}(\cdot)\left(\right.$ resp. $\left.c_{1}^{*}(\cdot)\right)$ is the number of (trivial) cycles in an optimal decomposition of $U B G(G)$.

An optimal decomposition can be computed as follows:
(1) remove all edges that belong to trivial cycles;
(2) each connected component that remains is Eulerian and therefore constitutes a nontrivial cycle.

Approximating the unsigned prefix DCJ distance

An edge $e \in G$ is a breakpoint if $0 \notin e$ and $e \notin \mathrm{Id}$, and an adjacency otherwise;

Example
The following genome has 3 breakpoints and 3 adjacencies:

Approximating the unsigned prefix DCJ distance

An edge $e \in G$ is a breakpoint if $0 \notin e$ and $e \notin \mathrm{Id}$, and an adjacency otherwise;

Example
The following genome has 3 breakpoints and 3 adjacencies:

Lemma
For any genome G, we have $\operatorname{pdcj}(G) \geq b(G)$.

Approximating the unsigned prefix DCJ distance

An edge $e \in G$ is a breakpoint if $0 \notin e$ and $e \notin \mathrm{Id}$, and an adjacency otherwise;

Example
The following genome has 3 breakpoints and 3 adjacencies:

Lemma

For any genome G, we have $p d c j(G) \geq b(G)$.

Proof.

A prefix DCJ cuts $\{0, v\}$ and another edge, then reconnects their endpoints. But $\{0, v\}$ is never a breakpoint, so $b(G)$ can only decrease by 1 .

A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline
Until $G=I d$, consider edge $\{0, v\} \in G$:
(1) if $v \neq 1$,

Example

A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline
Until $G=I d$, consider edge $\{0, v\} \in G$:
(1) if $v \neq 1$,
(2) otherwise $v=1$:
(1) if $\{1,2\} \notin G: \exists$ breakpoint $\{2, z\}$
\Rightarrow create $\{\{0, z\},\{1,2\}\}$
(2) otherwise $\{1,2\} \in G$: extract the longest run of adjacencies from 1 ; and then we can apply case 1 twice.

Example

A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline
Until $G=I d$, consider edge $\{0, v\} \in G$:
(1) if $v \neq 1$,
(2) otherwise $v=1$:
(1) if $\{1,2\} \notin G: \exists$ breakpoint $\{2, z\}$
\Rightarrow create $\{\{0, z\},\{1,2\}\}$
(2) otherwise $\{1,2\} \in G$: extract the longest run of adjacencies from 1 ; and then we can apply case 1 twice.

Example

A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline
Until $G=I d$, consider edge $\{0, v\} \in G$:
(1) if $v \neq 1$,
(2) otherwise $v=1$:
(1) if $\{1,2\} \notin G: \exists$ breakpoint $\{2, z\}$ \Rightarrow create $\{\{0, z\},\{1,2\}\}$
(2) otherwise $\{1,2\} \in G$: extract the longest run of adjacencies from 1 ; and then we can apply case 1 twice.

Example

A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline
Until $G=I d$, consider edge $\{0, v\} \in G$:
(1) if $v \neq 1$, then at least one of $\{v-1, x\}$ or $\{v+1, y\}$ is a breakpoint;
\Rightarrow create $\{\{0, x\},\{v-1, v\}\}$ or $\{\{0, y\},\{v, v+1\}\}$;
(2) otherwise $v=1$:
(1) if $\{1,2\} \notin G: \exists$ breakpoint $\{2, z\}$ \Rightarrow create $\{\{0, z\},\{1,2\}\}$
(2) otherwise $\{1,2\} \in G$: extract the longest run of adjacencies from 1 ; and then we can apply case 1 twice.

Example

A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline
Until $G=I d$, consider edge $\{0, v\} \in G$:
(1) if $v \neq 1$, then at least one of $\{v-1, x\}$ or $\{v+1, y\}$ is a breakpoint;
\Rightarrow create $\{\{0, x\},\{v-1, v\}\}$ or $\{\{0, y\},\{v, v+1\}\} ;$
(2) otherwise $v=1$:
(1) if $\{1,2\} \notin G: \exists$ breakpoint $\{2, z\}$ \Rightarrow create $\{\{0, z\},\{1,2\}\}$
(2) otherwise $\{1,2\} \in G$: extract the longest run of adjacencies from 1 ; and then we can apply case 1 twice.

Example

A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline
Until $G=I d$, consider edge $\{0, v\} \in G$:
(1) if $v \neq 1$, then at least one of $\{v-1, x\}$ or $\{v+1, y\}$ is a breakpoint;
\Rightarrow create $\{\{0, x\},\{v-1, v\}\}$ or $\{\{0, y\},\{v, v+1\}\}$;
(2) otherwise $v=1$:
(1) if $\{1,2\} \notin G: \exists$ breakpoint $\{2, z\}$ \Rightarrow create $\{\{0, z\},\{1,2\}\}$
(2) otherwise $\{1,2\} \in G$: extract the longest run of adjacencies from 1 ; and then we can apply case 1 twice.

Example

A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline
Until $G=I d$, consider edge $\{0, v\} \in G$:
(1) if $v \neq 1$, then at least one of $\{v-1, x\}$ or $\{v+1, y\}$ is a breakpoint;
\Rightarrow create $\{\{0, x\},\{v-1, v\}\}$ or $\{\{0, y\},\{v, v+1\}\}$;
(2) otherwise $v=1$:
(1) if $\{1,2\} \notin G: \exists$ breakpoint $\{2, z\}$ \Rightarrow create $\{\{0, z\},\{1,2\}\}$
(2) otherwise $\{1,2\} \in G$: extract the longest run of adjacencies from 1 ; and then we can apply case 1 twice.

Example

A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline
Until $G=I d$, consider edge $\{0, v\} \in G$:
(1) if $v \neq 1$, then at least one of $\{v-1, x\}$ or $\{v+1, y\}$ is a breakpoint;
\Rightarrow create $\{\{0, x\},\{v-1, v\}\}$ or $\{\{0, y\},\{v, v+1\}\}$;
(2) otherwise $v=1$:
(1) if $\{1,2\} \notin G: \exists$ breakpoint $\{2, z\}$ \Rightarrow create $\{\{0, z\},\{1,2\}\}$
(2) otherwise $\{1,2\} \in G$: extract the longest run of adjacencies from 1 ; and then we can apply case 1 twice.

Example

A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline
Until $G=I d$, consider edge $\{0, v\} \in G$:
(1) if $v \neq 1$, then at least one of $\{v-1, x\}$ or $\{v+1, y\}$ is a breakpoint;
\Rightarrow create $\{\{0, x\},\{v-1, v\}\}$ or $\{\{0, y\},\{v, v+1\}\}$;
(2) otherwise $v=1$:
(1) if $\{1,2\} \notin G: \exists$ breakpoint $\{2, z\}$ \Rightarrow create $\{\{0, z\},\{1,2\}\}$
(2) otherwise $\{1,2\} \in G$: extract the longest run of adjacencies from 1 ; and then we can apply case 1 twice.

Approximation guarantee

- Case 1: $b(G)$ decreases by 1 ;

A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline
Until $G=I d$, consider edge $\{0, v\} \in G$:
(1) if $v \neq 1$, then at least one of $\{v-1, x\}$ or $\{v+1, y\}$ is a breakpoint;
\Rightarrow create $\{\{0, x\},\{v-1, v\}\}$ or $\{\{0, y\},\{v, v+1\}\}$;
(2) otherwise $v=1$:
(1) if $\{1,2\} \notin G: \exists$ breakpoint $\{2, z\}$ \Rightarrow create $\{\{0, z\},\{1,2\}\}$
(2) otherwise $\{1,2\} \in G$: extract the longest run of adjacencies from 1 ; and then we can apply case 1 twice.

Approximation guarantee

- Case 1: $b(G)$ decreases by 1 ;
- Case 2.1: $b(G)$ decreases by 1 ;

A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline
Until $G=I d$, consider edge $\{0, v\} \in G$:
(1) if $v \neq 1$, then at least one of $\{v-1, x\}$ or $\{v+1, y\}$ is a breakpoint; \Rightarrow create $\{\{0, x\},\{v-1, v\}\}$ or $\{\{0, y\},\{v, v+1\}\}$;
(2) otherwise $v=1$:
(1) if $\{1,2\} \notin G: \exists$ breakpoint $\{2, z\}$ \Rightarrow create $\{\{0, z\},\{1,2\}\}$
(2) otherwise $\{1,2\} \in G$: extract the longest run of adjacencies from 1 ; and then we can apply case 1 twice.

Approximation guarantee

- Case 1: $b(G)$ decreases by 1 ;
- Case 2.1: $b(G)$ decreases by 1 ;
- Case 2.2: $b(G)$ decreases by 0 , then by 2 (case 1);

A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline
Until $G=I d$, consider edge $\{0, v\} \in G$:
(1) if $v \neq 1$, then at least one of $\{v-1, x\}$ or $\{v+1, y\}$ is a breakpoint; \Rightarrow create $\{\{0, x\},\{v-1, v\}\}$ or $\{\{0, y\},\{v, v+1\}\}$;
(2) otherwise $v=1$:
(1) if $\{1,2\} \notin G: \exists$ breakpoint $\{2, z\}$ \Rightarrow create $\{\{0, z\},\{1,2\}\}$
(2) otherwise $\{1,2\} \in G$: extract the longest run of adjacencies from 1 ; and then we can apply case 1 twice.

Approximation guarantee

- Case 1: $b(G)$ decreases by 1 ;
- Case 2.1: $b(G)$ decreases by 1 ;
- Case 2.2: $b(G)$ decreases by 0 , then by 2 (case 1);
\Rightarrow Worst case: $b(G)$ decreases by 2 in 3 steps;

A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline
Until $G=I d$, consider edge $\{0, v\} \in G$:
(1) if $v \neq 1$, then at least one of $\{v-1, x\}$ or $\{v+1, y\}$ is a breakpoint;
\Rightarrow create $\{\{0, x\},\{v-1, v\}\}$ or $\{\{0, y\},\{v, v+1\}\}$;
(2) otherwise $v=1$:
(1) if $\{1,2\} \notin G: \exists$ breakpoint $\{2, z\}$ \Rightarrow create $\{\{0, z\},\{1,2\}\}$
(2) otherwise $\{1,2\} \in G$: extract the longest run of adjacencies from 1 ; and then we can apply case 1 twice.

Approximation guarantee

- Case 1: $b(G)$ decreases by 1 ;
- Case 2.1: $b(G)$ decreases by 1 ;
- Case 2.2: $b(G)$ decreases by 0 , then by 2 (case 1);
\Rightarrow Worst case: $b(G)$ decreases by 2 in 3 steps;
$\Rightarrow 3 / 2$-approximation

Unsigned prefix reversals

- Unsigned prefix reversals are unsigned prefix DCJs that must yield a path at each step;
\checkmark therefore, $\operatorname{prd}(G) \geq p d c j(G)$;
\times but previous algorithm cannot be used;

Open problems

- Complexity issues:

	reversals		DCJs	
	unsigned	signed	unsigned	signed
unrestricted	NP-hard [4]	in P [6]	NP-hard [5]	in P [7]
prefix	NP-hard [3]	???	???	in P(here)

Open problems

- Complexity issues:

	reversals		DCJs	
	unsigned	signed	unsigned	signed
unrestricted	NP-hard [4]	in P [6]	NP-hard [5]	in P [7]
prefix	NP-hard [3]	???	???	in P(here)

- Approximability: is there a better guarantee than:
- 2 for prefix reversals (signed or unsigned)?
- 3/2 for unsigned prefix DCJs?

Open problems

- Complexity issues:

	reversals		DCJs	
	unsigned	signed	unsigned	signed
unrestricted	NP-hard [4]	in P [6]	NP-hard [5]	in P [7]
prefix	NP-hard [3]	???	$? ? ?$	in P(here)

- Approximability: is there a better guarantee than:
- 2 for prefix reversals (signed or unsigned)?
- $3 / 2$ for unsigned prefix DCJs?
- Exploring (prefix) DCJs on other graph classes;
- finding a shortest scenario is NP-hard [2];
- there is a $7 / 4$-approximation [2];

Open problems

- Complexity issues:

	reversals		DCJs	
	unsigned	signed	unsigned	signed
unrestricted	NP-hard [4]	in P [6]	NP-hard [5]	in P [7]
prefix	NP-hard [3]	???	$? ? ?$	in P(here)

- Approximability: is there a better guarantee than:
- 2 for prefix reversals (signed or unsigned)?
- $3 / 2$ for unsigned prefix DCJs?
- Exploring (prefix) DCJs on other graph classes;
- finding a shortest scenario is NP-hard [2];
- there is a $7 / 4$-approximation [2];

Thanks!

References I

Sheldon B. Akers, Balakrishnan Krishnamurthy, and Dov Harel.
The star graph: An attractive alternative to the n-cube.
In Proceedings of the Fourth International Conference on Parallel Processing, pages 393-400. Pennsylvania State University Press, August 1987.

Daniel Bienstock and Oktay Günlük.
A degree sequence problem related to network design.
Networks, 24(4):195-205, 1994.
Laurent Bulteau, Guillaume Fertin, and Irena Rusu.
Pancake flipping is hard.
Journal of Computer and System Sciences, 81(8):1556-1574, 2015.
Alberto Caprara.
Sorting permutations by reversals and Eulerian cycle decompositions.
SIAM Journal on Discrete Mathematics, 12(1):91-110 (electronic), January 1999.
Xin Chen.
On sorting unsigned permutations by double-cut-and-joins.
Journal of Combinatorial Optimization, 25(3):339-351, April 2013.
Sridhar Hannenhalli and Pavel A. Pevzner.
Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals.
Journal of the ACM, 46(1):1-27, 1999.
Sophia Yancopoulos, Oliver Attie, and Richard Friedberg.
Efficient sorting of genomic permutations by translocation, inversion and block interchange.
Bioinformatics, 21(16):3340-3346, 2005.

