Sorting Genomes by Prefix Double-Cut-and-Joins

Guillaume Fertin Géraldine Jean Anthony Labarre

March 23rd, 2023

Genome rearrangements for permutations

- (Signed) permutations model duplication-free genomes with the same contents;
- The actual numbering is irrelevant, so we assume either genome is the identity Id = (1 2 ··· n);

Genome rearrangements for permutations

- (Signed) permutations model duplication-free genomes with the same contents;
- The actual numbering is irrelevant, so we assume either genome is the identity Id = (1 2 ··· n);
- We aim to reconstruct evolutionary scenarios between species;

Genome rearrangements for permutations

- (Signed) permutations model duplication-free genomes with the same contents;
- The actual numbering is irrelevant, so we assume either genome is the identity Id = (1 2 ··· n);
- We aim to reconstruct evolutionary scenarios between species;

GENOME SORTING (PERMUTATIONS)

Input: a (signed) permutation π , a set *S* of (per)mutations; **Goal:** find a shortest sorting sequence of elements of *S* for π . (the length of that sequence is the **distance** of π)

Example (disregarding / considering gene orientation)

A more unified treatment is provided by:

- **1** unsigned genomes: paths on $\{0, 1, 2, \ldots, n+1\}$;
- **2** signed genomes: perfect matchings on $\{0, 1, 2, \dots, 2n + 1\}$;

A more unified treatment is provided by:

- **1** unsigned genomes: paths on $\{0, 1, 2, \ldots, n+1\}$;
- **2** signed genomes: perfect matchings on $\{0, 1, 2, \dots, 2n + 1\}$;

A more unified treatment is provided by:

- **1** unsigned genomes: paths on $\{0, 1, 2, \ldots, n+1\}$;
- **2** signed genomes: perfect matchings on $\{0, 1, 2, \dots, 2n + 1\}$;

A more unified treatment is provided by:

- 1 unsigned genomes: paths on $\{0, 1, 2, \dots, n+1\}$;
- **2** signed genomes: perfect matchings on $\{0, 1, 2, \dots, 2n + 1\}$;

A more unified treatment is provided by:

- **1** unsigned genomes: paths on $\{0, 1, 2, \ldots, n+1\}$;
- **2** signed genomes: perfect matchings on $\{0, 1, 2, \dots, 2n + 1\}$;

A more unified treatment is provided by:

- **1** unsigned genomes: paths on $\{0, 1, 2, \ldots, n+1\}$;
- **2** signed genomes: perfect matchings on $\{0, 1, 2, \dots, 2n + 1\}$;

The double cut-and-join (DCJ) operation

A **double cut-and-join** (DCJ) removes two edges $\{u, v\}$ and $\{w, x\}$ from a graph, then connects the four endpoints in one of two ways.

Example

The graph might be directed, belong to a particular class, \ldots which may restrict our options for reconnecting the endpoints (see examples later on).

DCJs in a biological setting

- DCJs generalise several well-studied mutations, e.g.:
 - transpositions; $3 \boxed{1} 5 \boxed{4} 2 6 \rightarrow 3 \boxed{4} 5 \boxed{1} 2 6$
 - reversals;
 - signed reversals;
 - block-transpositions;
 - block-interchanges;

 $3 \underbrace{15420}_{34} \rightarrow 3 \underbrace{+3120}_{34} \rightarrow 3 \underbrace{+3120}_{54} \rightarrow 3 \underbrace{+31200}_{54} \rightarrow 3 \underbrace{+312000}_{54} \rightarrow 3 \underbrace{+312000}_{54} \rightarrow 3 \underbrace{+3120$

DCJs in a biological setting

• DCJs generalise several well-studied mutations, e.g.:

- transpositions; $3 \boxed{1} 5 \boxed{4} 2 6 \rightarrow 3 \boxed{4} 5 \boxed{1} 2 6$
- reversals;
- signed reversals;
- block-transpositions;
- block-interchanges;
- Sorting genomes by DCJs is:
 - in P in the signed case [7];
 - NP-hard in the unsigned case [5];

- $3 \underline{1542} 6 \rightarrow 324516$
- $3 -15 -42 6 \rightarrow 3 -24 -516$ 3 15 42 6 \rightarrow 3 4 2 1 5 6
 - $3 15 4 26 \rightarrow 326415$

The prefix constraint

- We study prefix DCJs: one of the cut edges must be incident with 0;
- The constraint has no biological relevance: it originates from interconnection network design;
- Theoretical interest: many "unrestricted" problems remain open under the prefix constraint;

Results

We obtain:

- new lower bounds for sorting by prefix reversals or DCJs (signed or unsigned);
- a polynomial time algorithm for sorting by signed prefix DCJs;
- a 3/2-approximation for sorting by unsigned prefix DCJs;

To the best of our knowledge, this is the first $(2 - \varepsilon)$ -approximation for a prefix sorting problem not known to be in P.

Mimicking other rearrangements using DCJs

Algebraic transpositions as DCJs

Let π be a permutation and $\Gamma(\pi)$ be its graph; i.e., the cycles of π are exactly those of $\Gamma(\pi)$.

Example

Let us compute $(1, 2, 3)(4, 5, 6) = (1, 4) \circ (1, 2, 3, 4, 5, 6)$.

Algebraic transpositions as DCJs

Let π be a permutation and $\Gamma(\pi)$ be its graph; i.e., the cycles of π are exactly those of $\Gamma(\pi)$.

Example

Let us compute $(1, 2, 3)(4, 5, 6) = (1, 4) \circ (1, 2, 3, 4, 5, 6)$.

We must obtain a collection of cycles, so the red option is invalid.

Algebraic transpositions as DCJs

Let π be a permutation and $\Gamma(\pi)$ be its graph; i.e., the cycles of π are exactly those of $\Gamma(\pi)$.

Example

Let us compute $(1, 2, 3)(4, 5, 6) = (1, 4) \circ (1, 2, 3, 4, 5, 6)$.

We must obtain a collection of cycles, so the red option is invalid.

Viewing permutations of $\{1, 2, ..., n\}$ as paths on $\{0, 1, 2..., n, n+1\}$ allows us to express reversals as DCJs.

Viewing permutations of $\{1, 2, ..., n\}$ as paths on $\{0, 1, 2..., n, n+1\}$ allows us to express reversals as DCJs.

Viewing permutations of $\{1, 2, ..., n\}$ as paths on $\{0, 1, 2, ..., n, n + 1\}$ allows us to express reversals as DCJs.

Example

We must obtain a path, so the red option is forbidden.

Viewing permutations of $\{1, 2, ..., n\}$ as paths on $\{0, 1, 2, ..., n, n + 1\}$ allows us to express reversals as DCJs.

Example

We must obtain a path, so the red option is forbidden.

We can also simulate block-transpositions using two DCJs.

Signed reversals as DCJs

Likewise, we can represent *signed permutations* and mimick *signed reversals* using DCJs.

Signed reversals as DCJs

Likewise, we can represent *signed permutations* and mimick *signed reversals* using DCJs.

Signed reversals as DCJs

Likewise, we can represent *signed permutations* and mimick *signed reversals* using DCJs.

Results

Theorem (Cayley distance)

Sorting any permutation π in S_n requires $n - c(\pi)$ transpositions.

Theorem (Cayley distance)

Sorting any permutation π in S_n requires $n - c(\pi)$ transpositions.

Theorem ("Prefix" Cayley distance)

[1] For any permutation π in S_n , the number of prefix transpositions required to sort π is exactly $(c_1(\pi) = number \text{ of trivial cycles})$

$$n+c(\pi)-2c_1(\pi)-\left\{ egin{array}{cc} 0 & \mbox{if } \pi_1=1, \\ 2 & \mbox{otherwise.} \end{array}
ight.$$

Theorem (Cayley distance)

Sorting any permutation π in S_n requires $n - c(\pi)$ transpositions.

Theorem ("Prefix" Cayley distance)

[1] For any permutation π in S_n , the number of prefix transpositions required to sort π is exactly $(c_1(\pi) = number \text{ of trivial cycles})$

$$n+c(\pi)-2c_1(\pi)-\begin{cases} 0 & if \ \pi_1=1,\\ 2 & otherwise. \end{cases}$$

Intuition

Theorem (Cayley distance)

Sorting any permutation π in S_n requires $n - c(\pi)$ transpositions.

Theorem ("Prefix" Cayley distance)

[1] For any permutation π in S_n , the number of prefix transpositions required to sort π is exactly $(c_1(\pi) = number \text{ of trivial cycles})$

$$n+c(\pi)-2c_1(\pi)-\left\{ egin{array}{cc} 0 & \mbox{if } \pi_1=1, \\ 2 & \mbox{otherwise.} \end{array}
ight.$$

Intuition

 we can only split the cycle that contains π₁;

Theorem (Cayley distance)

Sorting any permutation π in S_n requires $n - c(\pi)$ transpositions.

Theorem ("Prefix" Cayley distance)

[1] For any permutation π in S_n , the number of prefix transpositions required to sort π is exactly $(c_1(\pi) = number \text{ of trivial cycles})$

$$n+c(\pi)-2c_1(\pi)-\left\{egin{array}{cc} 0 & \textit{if } \pi_1=1,\ 2 & \textit{otherwise.} \end{array}
ight.$$

Intuition

- we can only split the cycle that contains π₁;
- if π₁ = 1 but π is not sorted, we must waste one operation to access another nontrivial cycle.

Preliminary results

Theorem (Cayley distance)

Sorting any permutation π in S_n requires $n - c(\pi)$ transpositions.

Theorem ("Prefix" Cayley distance)

[1] For any permutation π in S_n , the number of prefix transpositions required to sort π is exactly $(c_1(\pi) = number \text{ of trivial cycles})$

$$n+c(\pi)-2c_1(\pi)-\left\{egin{array}{cc} 0 & \textit{if } \pi_1=1,\ 2 & \textit{otherwise.} \end{array}
ight.$$

Intuition

- we can only split the cycle that contains π₁;
- if π₁ = 1 but π is not sorted, we must waste one operation to access another nontrivial cycle.

Preliminary results

Theorem (Cayley distance)

Sorting any permutation π in S_n requires $n - c(\pi)$ transpositions.

Theorem ("Prefix" Cayley distance)

[1] For any permutation π in S_n , the number of prefix transpositions required to sort π is exactly $(c_1(\pi) = number \text{ of trivial cycles})$

$$n+c(\pi)-2c_1(\pi)-\left\{egin{array}{cc} 0 & \textit{if } \pi_1=1,\ 2 & \textit{otherwise.} \end{array}
ight.$$

Intuition

- we can only split the cycle that contains π₁;
- if π₁ = 1 but π is not sorted, we must waste one operation to access another nontrivial cycle.

Preliminary results

Theorem (Cayley distance)

Sorting any permutation π in S_n requires $n - c(\pi)$ transpositions.

Theorem ("Prefix" Cayley distance)

[1] For any permutation π in S_n , the number of prefix transpositions required to sort π is exactly $(c_1(\pi) = number \text{ of trivial cycles})$

$$n+c(\pi)-2c_1(\pi)-\left\{egin{array}{cc} 0 & \textit{if } \pi_1=1,\ 2 & \textit{otherwise.} \end{array}
ight.$$

Intuition

- we can only split the cycle that contains π₁;
- if π₁ = 1 but π is not sorted, we must waste one operation to access another nontrivial cycle.

Approach

- As we have seen, (prefix) transpositions are (prefix) DCJs;
- Strategy:
 - find "the right graph" representation for pairs of genomes, depending on the mutations we want to use;
 - rely on the prefix Cayley distance to obtain bounds based on that graph;

- A signed genome is a perfect matching G over $\{0, 1, ..., 2n + 1\}$;
- We want to obtain $Id = \{\{0,1\}, \{2,3\}, \dots, \{2n, 2n+1\}\};\$

- A signed genome is a perfect matching G over {0, 1, ..., 2n + 1};
- We want to obtain $Id = \{\{0,1\},\{2,3\},\ldots,\{2n,2n+1\}\};\$
- The breakpoint graph BG(G) is the union of G and Id;

- A signed genome is a perfect matching G over $\{0, 1, ..., 2n + 1\}$;
- We want to obtain $Id = \{\{0,1\}, \{2,3\}, \dots, \{2n, 2n+1\}\};\$
- The breakpoint graph BG(G) is the union of G and Id;

Every vertex has degree $2 \Rightarrow$ collection of cycles.

• Prefix DCJs have the same effect on BG(G) as on the cycles of a permutation; therefore:

• Prefix DCJs have the same effect on BG(G) as on the cycles of a permutation; therefore:

Theorem

For any signed genome G, we have

 $psdcj(G) \ge n+1+c(BG(G))-2c_1(BG(G))-\begin{cases} 0 & if \{0,1\} \in G, \\ 2 & otherwise. \end{cases}$

 Prefix DCJs have the same effect on BG(G) as on the cycles of a permutation; therefore:

Theorem

For any signed genome G, we have

$$psdcj(G) \ge n+1+c(BG(G))-2c_1(BG(G))-\begin{cases} 0 & if \{0,1\} \in G, \\ 2 & otherwise. \end{cases}$$

Example

With G as in the previous slide:

Algorithm outline

Algorithm outline

Until G = Id, check edge $\{0, v\} \in G$:

1 if $v \neq 1$: connect v to its "grey neighbour" in Id;

Algorithm outline

Until G = Id, check edge $\{0, v\} \in G$:

1 if $v \neq 1$: connect v to its "grey neighbour" in Id;

Algorithm outline

Until G = Id, check edge $\{0, v\} \in G$:

1 if $v \neq 1$: connect v to its "grey neighbour" in Id;

Algorithm outline

- if v ≠ 1: connect v to its "grey neighbour" in ld;
- otherwise v = 1: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Algorithm outline

- if v ≠ 1: connect v to its "grey neighbour" in Id;
- otherwise v = 1: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Algorithm outline

- if v ≠ 1: connect v to its "grey neighbour" in ld;
- otherwise v = 1: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Algorithm outline

- if v ≠ 1: connect v to its "grey neighbour" in Id;
- otherwise v = 1: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Algorithm outline

- if v ≠ 1: connect v to its "grey neighbour" in ld;
- otherwise v = 1: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Algorithm outline

- if v ≠ 1: connect v to its "grey neighbour" in ld;
- otherwise v = 1: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Algorithm outline

- if v ≠ 1: connect v to its "grey neighbour" in Id;
- Otherwise v = 1: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Algorithm outline

Until G = Id, check edge $\{0, v\} \in G$:

- if v ≠ 1: connect v to its "grey neighbour" in ld;
- Otherwise v = 1: apply any prefix DCJ that involves a black edge from a nontrivial cycle.

Every operation decreases the value of our lower bound by $1 \Rightarrow$ algorithm is optimal.

Signed prefix reversals

- Signed prefix reversals are signed prefix DCJs that must preserve an additional structural constraint (details omitted);
 - ✓ therefore, $psrd(G) \ge psdcj(G)$;
 - × but previous algorithm cannot be used;

Unsigned prefix DCJs

- An unsigned genome is a path G over $\{0, 1, \ldots, n+1\}$;
- We want to obtain the path $Id = (0, 1, \dots, n+1)$;

Example

• An unsigned version of the breakpoint graph yields a similar lower bound to the signed case (no time for details);

A lower bound for sorting by unsigned prefix DCJs

Theorem

For any genome G, we have:

$$pdcj(G) \ge n + 1 + c^{*}(UBG(G)) - 2c_{1}^{*}(UBG(G)) \\ - \begin{cases} 0 & if \{0, 1\} \in G \text{ and } \{1, 2\} \in G, \\ 1 & if \{0, 1\} \in G \text{ and } \{1, 2\} \notin G, \\ 2 & otherwise. \end{cases}$$

where $c^*(\cdot)$ (resp. $c_1^*(\cdot)$) is the number of (trivial) cycles in an optimal decomposition of UBG(G).

An optimal decomposition can be computed as follows:

- 1 remove all edges that belong to trivial cycles;
- each connected component that remains is Eulerian and therefore constitutes a nontrivial cycle.

Approximating the unsigned prefix DCJ distance

An edge $e \in G$ is a **breakpoint** if $0 \notin e$ and $e \notin Id$, and an **adjacency** otherwise;

Example

The following genome has 3 breakpoints and 3 adjacencies:

Approximating the unsigned prefix DCJ distance

An edge $e \in G$ is a **breakpoint** if $0 \notin e$ and $e \notin Id$, and an **adjacency** otherwise;

Example

The following genome has 3 breakpoints and 3 adjacencies:

Lemma

For any genome G, we have $pdcj(G) \ge b(G)$.

Approximating the unsigned prefix DCJ distance

An edge $e \in G$ is a **breakpoint** if $0 \notin e$ and $e \notin Id$, and an **adjacency** otherwise;

Example

The following genome has 3 breakpoints and 3 adjacencies:

Lemma

For any genome G, we have $pdcj(G) \ge b(G)$.

Proof.

A prefix DCJ cuts $\{0, v\}$ and another edge, then reconnects their endpoints. But $\{0, v\}$ is never a breakpoint, so b(G) can only decrease by 1.

Algorithm outline

Until G = Id, consider edge $\{0, v\} \in G$:

1 if $v \neq 1$,

Algorithm outline

Until G = Id, consider edge $\{0, v\} \in G$:

1 if $v \neq 1$,

2 otherwise v = 1:

 if {1,2} ∉ G: ∃ breakpoint {2, z} ⇒ create {{0, z}, {1,2}}
 otherwise {1,2} ∈ G: extract the longest run of adjacencies from 1; and then we can apply case 1 twice.

Algorithm outline

Until G = Id, consider edge $\{0, v\} \in G$:

1 if
$$v \neq 1$$
, then at least one of $\{v-1, x\}$
or $\{v+1, y\}$ is a breakpoint;
 \Rightarrow create $\{\{0, x\}, \{v-1, v\}\}$ or

 $\Rightarrow create \{\{0, x\}, \{v - 1, v\}\} c \{\{0, y\}, \{v, v + 1\}\};\$

2 otherwise
$$v = 1$$
:

1 if $\{1,2\} \notin G$: ∃ breakpoint $\{2,z\}$ ⇒ create $\{\{0,z\},\{1,2\}\}$

2 otherwise {1,2} ∈ G: extract the longest run of adjacencies from 1; and then we can apply case 1 twice.

Example • X • • •

Algorithm outline

Until G = Id, consider edge $\{0, v\} \in G$:

1 if
$$v \neq 1$$
, then at least one of $\{v-1, x\}$
or $\{v+1, y\}$ is a breakpoint;
 \Rightarrow create $\{\{0, x\}, \{v-1, v\}\}$ or

 $\Rightarrow create \{\{0, x\}, \{v - 1, v\}\} c \{\{0, y\}, \{v, v + 1\}\};\$

2 otherwise
$$v = 1$$
:

 $\begin{array}{l} \textbf{if } \{1,2\} \notin G \colon \exists \text{ breakpoint } \{2,z\} \\ \Rightarrow \text{ create } \{\{0,z\},\{1,2\}\} \end{array}$

2 otherwise {1,2} ∈ G: extract the longest run of adjacencies from 1; and then we can apply case 1 twice.

Example • X • • •

Algorithm outline

Until G = Id, consider edge $\{0, v\} \in G$:

• if
$$v \neq 1$$
, then at least one of $\{v-1, x\}$
or $\{v+1, y\}$ is a breakpoint;
 \Rightarrow create $\{\{0, x\}, \{v-1, v\}\}$ or

 $\{\{0, y\}, \{v, v+1\}\};$

2 otherwise
$$v = 1$$
:

1 if $\{1,2\} \notin G$: ∃ breakpoint $\{2, z\}$ ⇒ create $\{\{0, z\}, \{1, 2\}\}$

2 otherwise {1,2} ∈ G: extract the longest run of adjacencies from 1; and then we can apply case 1 twice.

Example

Algorithm outline

Until G = Id, consider edge $\{0, v\} \in G$:

• if
$$v \neq 1$$
, then at least one of $\{v-1, x\}$
or $\{v+1, y\}$ is a breakpoint;
 \Rightarrow create $\{\{0, x\}, \{v-1, v\}\}$ or

 $\{\{0, y\}, \{v, v+1\}\};$

2 otherwise
$$v = 1$$
:

1 if $\{1,2\} \notin G$: ∃ breakpoint $\{2, z\}$ ⇒ create $\{\{0, z\}, \{1, 2\}\}$

2 otherwise {1,2} ∈ G: extract the longest run of adjacencies from 1; and then we can apply case 1 twice.

Example

Algorithm outline

Until G = Id, consider edge $\{0, v\} \in G$:

• if
$$v \neq 1$$
, then at least one of $\{v-1, x\}$
or $\{v+1, y\}$ is a breakpoint;
 \Rightarrow create $\{\{0, x\}, \{v-1, v\}\}$ or

 $\{\{0, y\}, \{v, v+1\}\};$

2 otherwise
$$v = 1$$
:

1 if $\{1,2\} \notin G$: ∃ breakpoint $\{2,z\}$ ⇒ create $\{\{0,z\},\{1,2\}\}$

2 otherwise {1,2} ∈ G: extract the longest run of adjacencies from 1; and then we can apply case 1 twice.

Example

Algorithm outline

Until G = Id, consider edge $\{0, v\} \in G$:

1 if
$$v \neq 1$$
, then at least one of $\{v-1, x\}$
or $\{v+1, y\}$ is a breakpoint;
 \Rightarrow create $\{\{0, x\}, \{v-1, v\}\}$ or
 $\{\{0, y\}, \{v, v+1\}\}$;

2 otherwise
$$v = 1$$
:

● if $\{1,2\} \notin G$: \exists breakpoint $\{2,z\}$ \Rightarrow create $\{\{0,z\},\{1,2\}\}$

2 otherwise {1,2} ∈ G: extract the longest run of adjacencies from 1; and then we can apply case 1 twice.

Approximation guarantee

• Case 1: b(G) decreases by 1;

Algorithm outline

Until G = Id, consider edge $\{0, v\} \in G$:

1 if
$$v \neq 1$$
, then at least one of $\{v-1, x\}$
or $\{v+1, y\}$ is a breakpoint;
 \Rightarrow create $\{\{0, x\}, \{v-1, v\}\}$ or

 $\{\{0, y\}, \{v, v+1\}\};\$

2 otherwise
$$v = 1$$
:

1 if $\{1,2\} \notin G$: ∃ breakpoint $\{2, z\}$ ⇒ create $\{\{0, z\}, \{1, 2\}\}$

2 otherwise {1,2} ∈ G: extract the longest run of adjacencies from 1; and then we can apply case 1 twice.

- Case 1: b(G) decreases by 1;
- Case 2.1: b(G) decreases by 1;

Algorithm outline

Until G = Id, consider edge $\{0, v\} \in G$:

• if
$$v \neq 1$$
, then at least one of $\{v-1, x\}$
or $\{v+1, y\}$ is a breakpoint;
 \Rightarrow create $\{\{0, x\}, \{v-1, v\}\}$ or

 $\{\{0, y\}, \{v, v+1\}\};$

2 otherwise
$$v = 1$$
:

● if $\{1,2\} \notin G$: \exists breakpoint $\{2,z\}$ \Rightarrow create $\{\{0,z\},\{1,2\}\}$

2 otherwise {1,2} ∈ G: extract the longest run of adjacencies from 1; and then we can apply case 1 twice.

- Case 1: b(G) decreases by 1;
- Case 2.1: b(G) decreases by 1;
- Case 2.2: b(G) decreases by 0, then by 2 (case 1);

Algorithm outline

Until G = Id, consider edge $\{0, v\} \in G$:

• if
$$v \neq 1$$
, then at least one of $\{v-1, x\}$
or $\{v+1, y\}$ is a breakpoint;
 \Rightarrow create $\{\{0, x\}, \{v-1, v\}\}$ or

 $\{\{0, y\}, \{v, v+1\}\};$

2 otherwise
$$v = 1$$
:

1 if $\{1,2\} \notin G$: ∃ breakpoint $\{2, z\}$ ⇒ create $\{\{0, z\}, \{1, 2\}\}$

2 otherwise {1,2} ∈ G: extract the longest run of adjacencies from 1; and then we can apply case 1 twice.

- Case 1: b(G) decreases by 1;
- Case 2.1: b(G) decreases by 1;
- Case 2.2: b(G) decreases by 0, then by 2 (case 1);
- $\Rightarrow \text{ Worst case: } b(G) \\ \text{ decreases by 2 in 3 steps;}$

Algorithm outline

Until G = Id, consider edge $\{0, v\} \in G$:

1 if
$$v \neq 1$$
, then at least one of $\{v-1, x\}$
or $\{v+1, y\}$ is a breakpoint;
 \Rightarrow create $\{\{0, x\}, \{v-1, v\}\}$ or

 $\{\{0, y\}, \{v, v+1\}\};$

2 otherwise
$$v = 1$$
:

1 if $\{1,2\} \notin G$: ∃ breakpoint $\{2, z\}$ ⇒ create $\{\{0, z\}, \{1, 2\}\}$

2 otherwise {1,2} ∈ G: extract the longest run of adjacencies from 1; and then we can apply case 1 twice.

- Case 1: b(G) decreases by 1;
- Case 2.1: b(G) decreases by 1;
- Case 2.2: b(G) decreases by 0, then by 2 (case 1);
- $\Rightarrow \text{ Worst case: } b(G) \\ \text{ decreases by 2 in 3 steps;}$
- \Rightarrow 3/2-approximation

Unsigned prefix reversals

- Unsigned prefix reversals are unsigned prefix DCJs that must yield a path at each step;
 - ✓ therefore, $prd(G) \ge pdcj(G)$;
 - × but previous algorithm cannot be used;

• Complexity issues:

	reversals		DCJs	
	unsigned	signed	unsigned	signed
unrestricted	NP-hard [4]	in P [6]	NP-hard [5]	in P [7]
prefix	NP-hard [3]	???	???	in P(here)

Complexity issues:

	reversals		DCJs	
	unsigned	signed	unsigned	signed
unrestricted	NP-hard [4]	in P [6]	NP-hard [5]	in P [7]
prefix	NP-hard [3]	???	???	in P(here)

- Approximability: is there a better guarantee than:
 - 2 for prefix reversals (signed or unsigned)?
 - 3/2 for unsigned prefix DCJs?

Complexity issues:

	reversals		DCJs	
	unsigned	signed	unsigned	signed
unrestricted	NP-hard [4]	in P [6]	NP-hard [5]	in P [7]
prefix	NP-hard [3]	???	???	in P(here)

- Approximability: is there a better guarantee than:
 - 2 for prefix reversals (signed or unsigned)?
 - 3/2 for unsigned prefix DCJs?
- Exploring (prefix) DCJs on other graph classes;
 - finding a shortest scenario is NP-hard [2];
 - there is a 7/4-approximation [2];

Complexity issues:

	reversals		DCJs	
	unsigned	signed	unsigned	signed
unrestricted	NP-hard [4]	in P [6]	NP-hard [5]	in P [7]
prefix	NP-hard [3]	???	???	in P(here)

- Approximability: is there a better guarantee than:
 - 2 for prefix reversals (signed or unsigned)?
 - 3/2 for unsigned prefix DCJs?
- Exploring (prefix) DCJs on other graph classes;
 - finding a shortest scenario is NP-hard [2];
 - there is a 7/4-approximation [2];

Thanks!

References I

Sheldon B. Akers, Balakrishnan Krishnamurthy, and Dov Harel.

The star graph: An attractive alternative to the n-cube.

In Proceedings of the Fourth International Conference on Parallel Processing, pages 393–400. Pennsylvania State University Press, August 1987.

Daniel Bienstock and Oktay Günlük.

A degree sequence problem related to network design. *Networks*, 24(4):195–205, 1994.

Laurent Bulteau, Guillaume Fertin, and Irena Rusu.

Pancake flipping is hard.

Journal of Computer and System Sciences, 81(8):1556-1574, 2015.

Alberto Caprara.

Sorting permutations by reversals and Eulerian cycle decompositions. SIAM Journal on Discrete Mathematics, 12(1):91–110 (electronic), January 1999.

Xin Chen.

On sorting unsigned permutations by double-cut-and-joins. Journal of Combinatorial Optimization, 25(3):339–351, April 2013.

Sridhar Hannenhalli and Pavel A. Pevzner.

Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. *Journal of the ACM*, 46(1):1–27, 1999.

Sophia Yancopoulos, Oliver Attie, and Richard Friedberg.

Efficient sorting of genomic permutations by translocation, inversion and block interchange. *Bioinformatics*, 21(16):3340–3346, 2005.