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Genome rearrangements for permutations
• (Signed) permutations model duplication-free genomes with

the same contents;

• The actual numbering is irrelevant, so we assume either
genome is the identity Id = 〈1 2 · · · n〉;

• We aim to reconstruct evolutionary scenarios between species;

genome sorting (permutations)

Input: a (signed) permutation π, a set S of (per)mutations;
Goal: find a shortest sorting sequence of elements of S for π.
(the length of that sequence is the distance of π)

Example (disregarding / considering gene orientation)

A = 5 1 2 4 3 6

B = 1 2 3 4 5 6

mutations

= X−5 +1 +2 +4 −3 +6

= Y+1 +2 +3 +4 +5 +6

mutations
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Modelling genomes

A more unified treatment is provided by:

1 unsigned genomes: paths on {0, 1, 2, . . . , n + 1};
2 signed genomes: perfect matchings on {0, 1, 2, . . . , 2n + 1};

Example (from permutations to genomes)

5 1 2 4 3 6

0 5 1 2 4 3 6 7

0 1 2 3 4 5 6 7
Id:

−5 +1 +2 +4 −3 +6

0 10 9 1 2 3 4 7 8 6 5 11 12 13

x < 0 7→ (2|x |, 2|x | − 1); x > 0 7→ (2|x | − 1, 2|x |);

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Id:
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The double cut-and-join (DCJ) operation

A double cut-and-join (DCJ) removes two edges {u, v} and {w , x}
from a graph, then connects the four endpoints in one of two ways.

Example

w x

vu
(a)

w x

vu
(b)

w x

vu

The graph might be directed, belong to a particular class, . . . which may
restrict our options for reconnecting the endpoints (see examples later
on).
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DCJs in a biological setting

• DCJs generalise several well-studied mutations, e.g.:
• transpositions; 3 1 5 4 2 6→ 3 4 5 1 2 6
• reversals; 3 1 5 4 2 6→ 3 2 4 5 1 6
• signed reversals; 3 −1 5 − 4 2 6→ 3 −2 4 − 5 1 6
• block-transpositions; 3 1 5 4 2 6→ 3 4 2 1 5 6
• block-interchanges; 3 1 5 4 2 6 → 3 2 6 4 1 5

• Sorting genomes by DCJs is:
• in P in the signed case [7];
• NP-hard in the unsigned case [5];
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The prefix constraint

• We study prefix DCJs: one of the cut edges must be incident
with 0;

• The constraint has no biological relevance: it originates from
interconnection network design;

• Theoretical interest: many “unrestricted” problems remain
open under the prefix constraint;
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Results

We obtain:

• new lower bounds for sorting by prefix reversals or DCJs
(signed or unsigned);

• a polynomial time algorithm for sorting by signed prefix DCJs;

• a 3/2-approximation for sorting by unsigned prefix DCJs;

To the best of our knowledge, this is the first (2− ε)-approximation
for a prefix sorting problem not known to be in P.
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Mimicking other rearrangements using DCJs
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Algebraic transpositions as DCJs

Let π be a permutation and Γ(π) be its graph; i.e., the cycles of π
are exactly those of Γ(π).

Example

Let us compute (1, 2, 3)(4, 5, 6) = (1, 4) ◦ (1, 2, 3, 4, 5, 6).

1

2

3

4

5

6

×

1

2

3

4

5

6
X

1

2

3

4

5

6

We must obtain a collection of cycles, so the red option is invalid.
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Reversals as DCJs
Viewing permutations of {1, 2, . . . , n} as paths on
{0, 1, 2 . . . , n, n + 1} allows us to express reversals as DCJs.

Example

0 3 1 5 4 2 6 7

↑

0 3 1 5 4 2 6 7

↓

0 3 1 5 4 2 6 7

≡

0 3 2 4 5 1 6 7

We must obtain a path, so the red option is forbidden.
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Block-transpositions as DCJs

We can also simulate block-transpositions using two DCJs.

Example

0 3 1 5 4 2 6 7

↓

0 3 1 5 4 2 6 7

↓

0 3 1 5 4 2 6 7

≡

0 3 4 2 1 5 6 7
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Signed reversals as DCJs

Likewise, we can represent signed permutations and mimick signed
reversals using DCJs.

Example

−5 +1 +2 +4 −3 +6
0 10 9 1 2 3 4 7 8 6 5 11 12 13

0 10 9 1 2 3 4 7 8 6 5 11 12 13

≡

−5 +3 −4 −2 −1 +6
0 10 9 5 6 8 7 4 3 2 1 11 12 13
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Results
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Preliminary results

Theorem (Cayley distance)

Sorting any permutation π in Sn requires n − c(π) transpositions.

Theorem (“Prefix” Cayley distance)

[1] For any permutation π in Sn, the number of prefix transpositions
required to sort π is exactly (c1(π) = number of trivial cycles)

n + c(π)− 2c1(π)−
{

0 if π1 = 1,
2 otherwise.

Intuition

• we can only split the
cycle that contains π1;

• if π1 = 1 but π is not
sorted, we must waste
one operation to access
another nontrivial cycle.

Example

1 4 3 2

(1, 4)

4 1 3 2

(2, 4)

2 1 3 4

(1, 2)

1 2 3 4
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Approach

• As we have seen, (prefix) transpositions are (prefix) DCJs;
• Strategy:

• find “the right graph” representation for pairs of genomes,
depending on the mutations we want to use;

• rely on the prefix Cayley distance to obtain bounds based on
that graph;
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Signed prefix DCJs

• A signed genome is a perfect matching G over {0, 1, . . . , 2n + 1};
• We want to obtain Id = {{0, 1}, {2, 3}, . . . , {2n, 2n + 1}};

• The breakpoint graph BG (G ) is the union of G and Id;

Example

0 2 1 7 8 6 5 4 3 9 10 11
G :

0 1 2 3 4 5 6 7 8 9 10 11
Id:

0 2 1 7 8 6 5 4 3 9 10 11
BG (G ):

Every vertex has degree 2 ⇒ collection of cycles.
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Signed prefix DCJs

• Prefix DCJs have the same effect on BG (G ) as on the cycles of a
permutation; therefore:

Theorem
For any signed genome G , we have

psdcj(G ) ≥ n+1 + c(BG (G ))− 2c1(BG (G ))−
{

0 if {0, 1} ∈ G ,
2 otherwise.

Example

With G as in the previous slide:

0 2 1 7 8 6 5 4 3 9 10 11
BG (G ):

we have psdcj(G ) ≥ 6 + 3− 2× 2− 2 = 3.
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Sorting by signed prefix DCJs is in P

Algorithm outline

Until G = Id, check edge {0, v} ∈ G :

1 if v 6= 1: connect v to its “grey
neighbour” in Id;

2 otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Every operation decreases the value
of our lower bound by 1 ⇒ algorithm
is optimal.

Example

0 4 3 6 5 1 2 7

0 4 3 6 5 1 2 7

0 4 3 6 5 1 2 7

0 4 3 6 5 1 2 7

0 4 3 6 5 1 2 7
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Sorting by signed prefix DCJs is in P
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Signed prefix reversals

• Signed prefix reversals are signed prefix DCJs that must
preserve an additional structural constraint (details omitted);

X therefore, psrd(G ) ≥ psdcj(G );
× but previous algorithm cannot be used;
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Unsigned prefix DCJs

• An unsigned genome is a path G over {0, 1, . . . , n + 1};
• We want to obtain the path Id = (0, 1, . . . , n + 1);

Example

G :
0 3 2 5 4 1 6

Id:
0 1 2 3 4 5 6

• An unsigned version of the breakpoint graph yields a similar lower
bound to the signed case (no time for details);
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A lower bound for sorting by unsigned prefix DCJs

Theorem

For any genome G , we have:

pdcj(G ) ≥ n + 1 + c∗(UBG (G ))− 2c∗1 (UBG (G ))

−


0 if {0, 1} ∈ G and {1, 2} ∈ G ,
1 if {0, 1} ∈ G and {1, 2} /∈ G ,
2 otherwise.

where c∗(·) (resp. c∗1 (·)) is the number of (trivial) cycles in an
optimal decomposition of UBG (G ).

An optimal decomposition can be computed as follows:

1 remove all edges that belong to trivial cycles;

2 each connected component that remains is Eulerian and
therefore constitutes a nontrivial cycle.
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Approximating the unsigned prefix DCJ distance
An edge e ∈ G is a breakpoint if 0 /∈ e and e /∈ Id, and an
adjacency otherwise;

Example

The following genome has 3 breakpoints and 3 adjacencies:

0 3 2 5 4 1 6

Lemma

For any genome G , we have pdcj(G ) ≥ b(G ).

Proof.

A prefix DCJ cuts {0, v} and another edge, then reconnects their
endpoints. But {0, v} is never a breakpoint, so b(G ) can only
decrease by 1.
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Approximating the unsigned prefix DCJ distance
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A 3/2-approximation algorithm for unsigned prefix DCJs

Algorithm outline

Until G = Id, consider edge {0, v} ∈ G :

1 if v 6= 1,

then at least one of {v −1, x}
or {v + 1, y} is a breakpoint;

⇒ create {{0, x}, {v − 1, v}} or
{{0, y}, {v , v + 1}};

2 otherwise v = 1:

1 if {1, 2} /∈ G : ∃ breakpoint {2, z}
⇒ create {{0, z}, {1, 2}}

2 otherwise {1, 2} ∈ G :
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example

0 1 2 3 5 4 6

0 1 2 3 5 4 6

0 1 2 3 5 4 6

0 1 2 3 5 4 6
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adjacencies from 1; and then we
can apply case 1 twice.

Approximation guarantee

• Case 1: b(G ) decreases
by 1;

• Case 2.1: b(G ) decreases
by 1;

• Case 2.2: b(G ) decreases
by 0, then by 2 (case 1);

⇒ Worst case: b(G )
decreases by 2 in 3 steps;

⇒ 3/2-approximation
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Unsigned prefix reversals

• Unsigned prefix reversals are unsigned prefix DCJs that must
yield a path at each step;

X therefore, prd(G ) ≥ pdcj(G );
× but previous algorithm cannot be used;
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Open problems

• Complexity issues:
reversals DCJs

unsigned signed unsigned signed

unrestricted NP-hard [4] in P [6] NP-hard [5] in P [7]

prefix NP-hard [3] ??? ??? in P(here)

• Approximability: is there a better guarantee than:
• 2 for prefix reversals (signed or unsigned)?
• 3/2 for unsigned prefix DCJs?

• Exploring (prefix) DCJs on other graph classes;
• finding a shortest scenario is NP-hard [2];
• there is a 7/4-approximation [2];

Thanks!
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A degree sequence problem related to network design.
Networks, 24(4):195–205, 1994.

Laurent Bulteau, Guillaume Fertin, and Irena Rusu.

Pancake flipping is hard.
Journal of Computer and System Sciences, 81(8):1556–1574, 2015.

Alberto Caprara.

Sorting permutations by reversals and Eulerian cycle decompositions.
SIAM Journal on Discrete Mathematics, 12(1):91–110 (electronic), January 1999.

Xin Chen.

On sorting unsigned permutations by double-cut-and-joins.
Journal of Combinatorial Optimization, 25(3):339–351, April 2013.

Sridhar Hannenhalli and Pavel A. Pevzner.

Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals.
Journal of the ACM, 46(1):1–27, 1999.

Sophia Yancopoulos, Oliver Attie, and Richard Friedberg.

Efficient sorting of genomic permutations by translocation, inversion and block interchange.
Bioinformatics, 21(16):3340–3346, 2005.

84


	Mimicking other rearrangements using DCJs
	Results

