FUNCTION: Toh - convert any symmetric function to a h-polynomial
CALLING SEQUENCE:
- Toh(sf)
- Toh(sf, b)
- SYMF[Toh](sf)
- SYMF[Toh](sf, b)
-
PARAMETERS:
- sf = any symmetric function
- b = any name of a known basis
SYNOPSIS:
- The Toh function converts any symmetric function to a h-polynomial.
- The input is any expression in terms of the basic symmetric functions.
- The symmetric function sf is expanded and the result is not collected.
- One may specify by a second argument, say b, that sf is solely expressed
in terms of the known basis b.
- One may add 'noexpand' just after the argument sf to choose not to
expand the symmetric function sf before treating it.
- One may collect the result by adding a third argument: this is done
by Toh(sf, b, 'collect'). For instance, Toh(sf, 'h', 'collect') may be
used to collect the argument sf.
- Whenever there is a conflict between the function name Toh and another
name used in the same session, use the long form SYMF['Toh'].
EXAMPLES:
> with(SYMF):
> Toh((1+q)^5*e3*e4): # expands the input
> Toh((1+q)^5*e3*e4,noexpand): # does not expand (1+q)^5
> Toh((1+q)^5*e3*e4,collect): # collects the result
> Toh((1+q)^5*e3*e4,noexpand,'e'): # the most efficient
> Toh((1+q)^5*e3*e4,'e',collect): # specifies a basis
> Toh((1+q)^5*e3*e4,noexpand,'e',collect):
> Toh(s[2,1]*e4 - 2*q*p3);
2 2 3 2 2 3
- h4 h2 h1 + h4 h3 + 5 h3 h1 h2 - 2 h3 h1 + h2 h1 - h2 h3 - 3 h2 h1
5 4 3
+ h1 h2 - h1 h3 - 6 q h3 + 6 q h2 h1 - 2 q h1
SEE ALSO: Toc Toe Tom Top Tos