FUNCTION: SfZee - compute the scalar product of a p-function with itself
CALLING SEQUENCE:
- SfZee(part)
- SfZee(part, q)
- SfZee(part, q, t)
- SYMF[SfZee](part)
- SYMF[SfZee](part, q)
- SYMF[SfZee](part, q, t)
-
PARAMETERS:
- part = any list denoting a partition
- q, t = any expressions
SYNOPSIS:
- Let part=[...3^i 2^j 1^k], and let sf denote the product ...p3^i*p2^j*
p1^k, then SfZee(part) = SfScalar(sf, sf) = ... 3^i i! 2^j j! 1^k k!.
- The argument must be a partition, that is a weakly decreasing list of
positive integers.
- When used with a second parameter q, it corresponds to a usual
deformation of the standard SfScalar(sf, sf) scalar product. Thus:
SfZee(part, q) = SfZee(part)*q^(nops(part)).
- When used with three paramaters, it gives another deformation of the
usual scalar product: SfZee(part, q, t) = SfZee(part) multiplied by all
(1-q^part[i])/(1-t^part[i]) for i from 1 to nops(part).
- Whenever there is a conflict between the function name SfZee and another
name used in the same session, use the long form SYMF['SfZee'].
EXAMPLES:
> with(SYMF):
> SfZee([4,3,1,1]);
24
> SfZee([4,3,1,1], 'q');
4
24 q
> SfZee([4,3,1,1], 'q', 't');
4 3 2
(1 - q ) (1 - q ) (1 - q)
24 --------------------------
4 3 2
(1 - t ) (1 - t ) (1 - t)
SEE ALSO: