FUNCTION: SfTheta - apply the theta-automorphism
CALLING SEQUENCE:
- SfTheta(sf, a)
- SfTheta(sf, q, t)
- SYMF[SfTheta](sf, a)
- SYMF[SfTheta](sf, q, t)
-
PARAMETERS:
- sf = any symmetric function
- a, q, t = any names or expressions
SYNOPSIS:
- The SfTheta function realizes a certain multiplicative automorphism of
the ring of symmetric functions. It is defined on power-sum functions
as follows: SfTheta(sf, a) gives the image of sf under the
transformation p.i --> a*p.i.
- SfTheta(sf, q, t) is the image of sf under the transformation:
p.i --> (1-q^i)/(1-t^i) * p.i.
- The result is given in the p-basis.
- Whenever there is a conflict between the function name SfTheta and
another name used in the same session, use the long form SYMF['SfTheta'].
EXAMPLES:
> with(SYMF):
> SfTheta(s[4,1], a);
3 2 4 3 5 5 2
1/6 a p3 p1 + 1/6 a p2 p1 + 1/30 a p1 - 1/5 a p5 - 1/6 a p3 p2
> SfTheta(p3, q, t);
3
(1 - q ) p3
- -----------
3
- 1 + t
> SfTheta(s[2,1], q, t);
3 3 3
(- 1 + q) p1 (- 1 + q ) p3
1/3 -------------- - 1/3 -------------
3 3
(- 1 + t) - 1 + t
SEE ALSO: SfOmega