FUNCTION: SfEval - realize the action of symmetric functions on
polynomials
CALLING SEQUENCE:
- SfEval(sf, expr)
- SYMF[SfEval](sf, expr)
-
PARAMETERS:
- sf = any symmetric function
- expr = any expression depending on some variables
SYNOPSIS:
- Symmetric functions can be considered as operators on polynomials
(lambda-ring structure of the ring of polynomials). Let sf be a power-
sum pk, then SfEval(pk, c_u u + c_v v + ...) is equal to
c_u u^k + c_v v^k + ... where u, v, ... are monomials and c_u, c_v, ...
are scalars.
- For a product of power-sums sf=pi pj ..., SfEval(sf, expr) is set to be
equal to the product SfEval(pi, expr) * SfEval(pj, expr) * ... The
definition is extended by linearity to any symmetric function sf.
- Whenever there is a conflict between the function name SfEval and
another name used in the same session, use the long form SYMF['SfEval'].
EXAMPLES:
> with(SYMF):
> SfEval(p2, 3*x*y + 2*z);
2 2 2
3 x y + 2 z
> SfEval(p3*p4 + q*p2, 2*x + 3*y);
3 3 4 4 2 2
(2 x + 3 y ) (2 x + 3 y ) + q (2 x + 3 y )
SEE ALSO: SfPlethysm