ACE BN BNA CG CLG COMP FM FREE HEKA IDCA NCA NCSF PART SFA SG SGA SP SYMF TAB TYP

FUNCTION: SfDualBasis - addition of a new basis, dual to an existing one

CALLING SEQUENCE:

SfDualBasis(b, old)
SfDualBasis(b, old, scal)
SYMF[SfDualBasis](b, old)
SYMF[SfDualBasis](b, old, scal)

PARAMETERS:

b = any name
old = any name of a previously defined basis
scal = any procedure accepting a partition as input

SYNOPSIS:

EXAMPLES:


> with(SYMF):
> NewZee:=proc(part) SfZee(part, 0, t) end:  # Hall-Littlewood polynomials
> SfDualBasis(MS, 's', NewZee);        # basis of modified Schur functions
 
                             {p, s, e, h, m, c, MS}
 
> Tos(MS[3], 'collect');
 
                                  2                3    2
           (1 - t) s[3] + (- t + t ) s[2, 1] + (- t  + t ) s[1, 1, 1]
 
> Tos(SfTheta(s[3], t, 0), 'collect');
 
                                  2                3    2
           (1 - t) s[3] + (- t + t ) s[2, 1] + (- t  + t ) s[1, 1, 1]
 
> ToMS(MS[2]*s[2], 'collect');
 
                 MS[4]          (2 + t) MS[3, 1]     (t + 3) MS[2, 2]
          ------------------ + ------------------ + ------------------
                   2                    2                    2
          (- 1 + t)  (t + 1)   (- 1 + t)  (t + 1)   (- 1 + t)  (t + 1)
 
                 (4 + 3 t) MS[2, 1, 1]     MS[1, 1, 1, 1]
               + --------------------- + 6 --------------
                            2                         2
                   (- 1 + t)  (t + 1)        (- 1 + t)
 
> SfMat(4, 'MS', 'm');
 
                               [ 1  1  1  1  1 ]
                               [               ]
                               [ 0  1  1  2  3 ]
                               [               ]
                               [ 0  0  1  1  2 ]
                               [               ]
                               [ 0  0  0  1  3 ]
                               [               ]
                               [ 0  0  0  0  1 ]
 

SEE ALSO: SfAddBasis SfMat SfScalar SfZee