FUNCTION: SgaYang - compute a special element of the symmetric group
algebra
CALLING SEQUENCE:
- SgaYang(perm)
- SGA[SgaYang](perm)
-
PARAMETERS:
- perm = any list denoting a permutation
SYNOPSIS:
- The SgaYang function calculates a special element of the symmetric
group algebra.
- { SgaYang(perm), perm in ListPerm(n) } is a linear basis of the
symmetric group algebra, as a free module with coefficients in the xi's.
- When called with a second parameter, say 'y', one specifies that
coefficients are in the yi's.
- When this second parameter is 'num' then x1, x2, x3, ... are specialized
to 1, 2, 3, ...
- This basis is defined by the recursion: for a simple transposition sk
and a permutation perm, such that length(perm sk) > length(perm), then
SgaYang(perm sk) = SgaYang(perm) &!* (1 + (x_j - x_i) sk) where
i=perm[k] and j=perm[k+1].
- Whenever there is a conflict between the function name SgaYang and
another name used in the same session, use the long form
SGA['SgaYang'].
EXAMPLES:
> with(SGA):
> SgaYang([3,1,2]);
(x3 - x2) A[1, 3, 2] - (- x3 + x1) (x3 - x2) A[3, 1, 2]
+ A[1, 2, 3] + (x3 - x1) A[2, 1, 3]
> SgaYang([3,1,2], 'y');
(y3 - y2) A[1, 3, 2] - (- y3 + y1) (y3 - y2) A[3, 1, 2]
+ A[1, 2, 3] + (y3 - y1) A[2, 1, 3]
SEE ALSO: