ACE BN BNA CG CLG COMP FM FREE HEKA IDCA NCA NCSF PART SFA SG SGA SP SYMF TAB TYP

FUNCTION: SgaOnXfix - action of an element of the symmetric group algebra on the ring of polynomials as a free module over Sym

CALLING SEQUENCE:

SgaOnXfix(e_1, exp)
SGA[SgaOnXfix](e_1, exp)

PARAMETERS:

e_1 = any element of the symmetric group algebra
exp = any expression

SYNOPSIS:

EXAMPLES:


> with(SGA):
> _FMn;
 
                                      4
 
> SgaOnXfix(q*A[3,2,1], s[1,1]*X[2,4,1,3], collect);
 
                           3                  3
   (s[2, 1] + s[1, 1, 1]) q  X[1, 3, 4, 2] - q  X[2, 3, 4, 1] s[1, 1]
 
                                              3
    + (s[2, 2] + s[2, 1, 1] + s[1, 1, 1, 1]) q  X[2, 1, 3, 4]
 
                                                       3
    - (s[2, 2, 1] + s[2, 1, 1, 1] + s[1, 1, 1, 1, 1]) q  X[1, 2, 3, 4]
 
                              3                  3
    - (s[2, 1] + s[1, 1, 1]) q  X[2, 1, 4, 3] + q  X[4, 1, 2, 3] s[1, 1]
 

SEE ALSO: FM[FM_n]