FUNCTION: SgaOnPol - action of an element of the algebra on an expression
CALLING SEQUENCE:
- SgaOnPol(e_1, exp)
- SgaOnPol(e_1, exp, v)
- SGA[SgaOnPol](e_1, exp)
- SGA[SgaOnPol](e_1, exp, v)
-
PARAMETERS:
- e_1 = any element of the symmetric group algebra
- exp = any expression
- v = any (extra) string
SYNOPSIS:
- The SgaOnPol function realizes the action of an element of the symmetric
algebra, say e_1, on an expression exp. Each permutation acts by
permuting the indices of the variables.
- By default the algebra acts on the variables x1, x2, x3, ...
- A simple transposition, say [1,2,4,3,5,6], exchanges the variables x3
and x4.
- When called with a third argument v, being, say `y`, the SgaOnPol
function acts on the variables y1, y2, y3, ...
- Whenever there is a conflict between the function name SgaOnPol and
another name used in the same session, use the long form SGA['SgaOnPol'].
EXAMPLES:
> with(SGA):
> SgaOnPol(A[2,1], x1+x3);
x2 + x3
> SgaOnPol(A[2,1], x1+x3, `y`);
x1 + x3
> SgaOnPol(A[2,1] - x3*A[3,1,2], x1+x3);
- x3 (x2 + x3) + x2 + x3
SEE ALSO: