FUNCTION: SgaJucis - Jucis-Murphy element of the symmetric group algebra
CALLING SEQUENCE:
- SgaJucis(i)
- SGA[SgaJucis](i)
-
PARAMETERS:
- i = any positive integer
SYNOPSIS:
- The SgaJucis function computes the i-th Jucis-Murphy element inside the
algebra of the symmetric group of degree n (i<=n), where n is taken to
be i by default or the second argument if available.
- The algebra generated by the Jucis-Murphy elements is a maximal
commutative sub-algebra of the symmetric group algebra.
- More explicitly, denoting T(i,j) the transposition exchanging i and j,
we have: SgaJucis(1) = 0, SgaJucis(2) = T(1,2), SgaJucis(3) = T(1,3) +
T(2,3), ..., SgaJucis(k) = T(1,k) + T(2,k) + ... + T(k-1,k).
- Whenever there is a conflict between the function name SgaJucis and
another name used in the same session, use the long form SGA['SgaJucis'].
EXAMPLES:
> with(SGA):
> SgaJucis(2);
A[2, 1]
> SgaJucis(4, 6);
A[4, 2, 3, 1, 5, 6] + A[1, 4, 3, 2, 5, 6] + A[1, 2, 4, 3, 5, 6]
SEE ALSO: SG[SgTranspo]