FUNCTION: SfAOmega - apply the omega-automorphism
CALLING SEQUENCE:
- SfAOmega(sfa)
- SfAOmega(sfa, alist)
- SFA[SfAOmega](sfa)
- SFA[SfAOmega](sfa, alist)
-
PARAMETERS:
- sfa = any valid expression in SFA
- alist = a list of alphabets
SYNOPSIS:
- The omega-automorphism is an involution defined on symmetric functions
by:
- h[I](A) <-> e[I](A)
- s[I](A) <-> s[I~](A)
- p[I](A) <-> -1^(length(I)+|I|) p[I](A),
where I~ is the conjugate partition of I, and |I| is the weight of I.
- One can apply SfAOmega solely on symmetric functions over the alphabets
given in the second parameter alist.
- Whenever there is a conflict between the function name SfAOmega and
another name used in the same session, use the long form
SFA['SfAOmega'].
EXAMPLES:
> with(SFA):
> SfAOmega( p[3,1](A1) - q*s[3](A2) );
p[3, 1](A1) - q s[1, 1, 1](A2)
> SfAOmega( p[3,1](A1) - q*s[3](A2), [ A1 ]);
p[3, 1](A1) - q s[3](A2)
SEE ALSO: SYMF[SfOmega] PART[Part2Conjugate]