FUNCTION: ToQPh - express any quasi-symmetric function in the
QPh-basis (dual basis of noncommutative power sums symmetric function of the second kind)
CALLING SEQUENCE:
- ToQPh(qsf)
- ToQPh(qsf, b)
- NCSF[ToQPh](qsf)
- NCSF[ToQPh](qsf, b)
-
PARAMETERS:
- qsf = any quasi-symmetric function
- b = any name of a known basis
SYNOPSIS:
- The ToQPh function computes the expansion of qsf in the QPh-basis.
- The input is any expression in terms of the basic quasi-symmetric
functions.
- The quasi-symmetric function qsf is expanded and the result is
not collected.
- One may specify by a second argument, say b, that qsf is solely
expressed in terms of the known basis b.
- The call ToQPh(qsf, 'QPh') does not affect the argument qsf.
- One may add 'noexpand' just after the argument qsf to choose not
to expand the quasi-symmetric function qsf before treating it.
- One may collect the result by adding a third argument: this is
done by ToQPh(qsf, b, 'collect'). For instance, ToQPh(qsf, 'QPh',
'collect') may be used to collect the argument qsf.
- The noncommutative multiplication is denoted by the &* operator.
- Whenever there is a conflict between the function name ToQPh
and another name used in the same session, use the long form
NCSF['ToQPh'].
EXAMPLES:
> with(NCSF):
> ToQPh((1+q)^2*QPs[2,1]): # expands the input
> ToQPh((1+q)^2*QPs[2,1],noexpand): # does not expand (1+q)^2
> ToQPh((1+q)^2*QPs[2,1],collect): # collects the result
> ToQPh((1+q)^2*QPh[2,1]*QPh[2],'QPh'): # specifies a basis
> ToQPh((1+q)^2*QPh[2,1],noexpand,'QPh',collect):# the most efficient
> ToQPh((1+q)^2*QPs[2,1]+M[3,1]+t^3*M[2,2],noexpand,collect);
2 2 3
- 1/2 (1 + q) QPh[3] + 3 (1 + q) QPh[2, 1] + t QPh[2, 2]
3
+ (- 1/2 - 1/2 t ) QPh[4] + QPh[3, 1]
SEE ALSO: ToE ToF ToM ToQPs