FUNCTION: ToE - express any quasi-symmetric function in the E-basis
(dual basis of noncommutative elementary symmetric function)
CALLING SEQUENCE:
- ToE(qsf)
- ToE(qsf, b)
- NCSF[ToE](qsf)
- NCSF[ToE](qsf, b)
-
PARAMETERS:
- qsf = any quasi-symmetric function
- b = any name of a known basis
SYNOPSIS:
- The ToE function computes the expansion of qsf in the E-basis.
- The input is any expression in terms of the basic quasi-symmetric
functions.
- The quasi-symmetric function qsf is expanded and the result is
not collected.
- One may specify by a second argument, say b, that qsf is solely
expressed in terms of the known basis b.
- The call ToE(qsf, 'E') does not affect the argument qsf.
- One may add 'noexpand' just after the argument qsf to choose not
to expand the quasi-symmetric function qsf before treating it.
- One may collect the result by adding a third argument: this is done
by ToE(qsf, b, 'collect'). For instance, ToE(qsf, 'E', 'collect') may
be used to collect the argument qsf.
- The noncommutative multiplication is denoted by the &* operator.
- Whenever there is a conflict between the function name ToE and
another name used in the same session, use the long form NCSF['ToE'].
EXAMPLES:
> with(NCSF):
> ToE((1+q)^2*F[2,1]*F[2]): # expands the input
> ToE((1+q)^2*F[2,1]*F[2],noexpand): # does not expand (1+q)^2
> ToE((1+q)^2*F[2,1]*F[2],collect): # collects the result
> ToE((1+q)^5*E[2,3]*E[1,2],'E'): # specifies a basis
> ToE((1+q)^2*F[2,1]*F[2],noexpand,'F',collect); # the most efficient
> ToE((1-q)^2*F[1,2,1]+QPh[2]&*F[1,1],noexpand,collect);
2 2
- E[1, 2, 1] + (1 - q) E[1, 1, 1, 1] + ((1 - q) - 2) E[2, 2]
2 2
+ (- 1 + (1 - q) ) E[2, 1, 1] + (- 1 + (1 - q) ) E[1, 1, 2] - E[4]
- E[1, 3] - E[3, 1]
SEE ALSO: ToQPh ToQPs ToF ToM