FUNCTION: QsfMat - transition matrix from X-basis to Y-basis
CALLING SEQUENCE:
- QsfMat(n,X,Y)
- NCSF[QsfMat](n,X,Y)
-
PARAMETERS:
- X,Y = two bases
- n = any positive integer (n>0)
SYNOPSIS:
- The QsfMat function computes the transition matrix from the X-basis
to the Y-basis, where X and Y being bases of quasi-symetric functions.
- In quasi-symmetric theory, we defined following bases:
E-basis : elementary quasi-symmetric functions,
QPh-basis : dual basis of noncommutative power sums
symmetric functions of the second kind,
QPs-basis : dual basis of noncommutative power sums symmetric
functions of the first kind,
F-basis : ribbon Schur quasi-symmetric function
M-basis : monomial quasi-symmetric functions.
- The result is a 2^(n-1) x 2^(n-1) square matrix.
- Whenever there is a conflict between the function name QsfMat
and another name used in the same session, use the long
form NCSF['QsfMat'].
EXAMPLES:
> with(NCSF):
> QsfMat(3,'F','M');
[ 1 1 1 1 ]
[ ]
[ 0 1 0 1 ]
[ ]
[ 0 0 1 1 ]
[ ]
[ 0 0 0 1 ]
SEE ALSO: NcsfMat