FUNCTION: NcsfTransAlpha - specialization A/(1-q) --> A or A --> A/(1-q)
CALLING SEQUENCE:
- NcsfTransAlpha(ncsf, specialize, q)
- NCSF[NcsfTransAlpha](ncsf, specialize, q)
-
PARAMETERS:
- ncsf = any noncommutative symmetric function
- specialize = indicate the type of specialization
- q = any formal parameter
SYNOPSIS:
- The NcsfTransAlpha function computes the direct transformation
A/(1-q) --> A or the inverse transformation A --> A/(1-q). A is
a set of variables on the noncommutative symmetric function ncsf.
- The NcsfTransAlpha function computes the direct transformation
A/(1-q) --> A when the second argument matches 'direct'.
- The NcsfTransAlpha function computes the inverse transformation
A --> A/(1-q) when the second argument matches 'inverse'.
- The input is any expression in terms of the basic noncommutative
symmetric functions.
- The noncommutative symmetric function ncsf is expanded and the result
is not collected.
- One may add 'noexpand' just after the argument q to choose not
to expand the noncommutative symmetric function ncsf before treating
it.
- One may collect the result by adding a fourth argument: this is done
by NcsfTransAlpha(ncsf, specialize, q, 'collect').
- Whenever there is a conflict between the function name
NcsfTransAlpha and another name used in the same session,
use the long form NCSF['NcsfTransAlpha'].
EXAMPLES:
> with(NCSF):
> NcsfTransAlpha((1-q)^3*S[2,1],direct,'q'): # expand the input
> NcsfTransAlpha((1-q)^3*S[2,1],direct,'q',noexpand): # does not expand
# the input
> NcsfTransAlpha((1-q)^3*S[2,1],direct,'q',collect): # collect the result
> NcsfTransAlpha((1-q)^3*S[2,1],direct,'q',noexpand): # the most efficient
> NcsfTransAlpha((1-q)^3*S[2,1],direct,'q',noexpand,collect);
S[2, 1] (q - 1) S[1, 1, 1] q
- --------------- + ------------
q + 1 q + 1
> NcsfTransAlpha((1-q)^3*S[2,1],inverse,'q',noexpand,collect);
5
(q - 1) (- R[3] - R[2, 1] + q R[1, 2] + q R[1, 1, 1])
SEE ALSO: