FUNCTION: NcaOnPol - action of an element of the algebra on a polynomial
CALLING SEQUENCE:
- NcaOnPol(e_1, exp)
- NcaOnPol(e_1, exp, v)
- NCA[NcaOnPol](e_1, exp)
- NCA[NcaOnPol](e_1, exp, v)
-
PARAMETERS:
- e_1 = any element of the nilCoxeter algebra
- exp = any expression
- v = any (extra) string
SYNOPSIS:
- The NcaOnPol function realizes the action of an element of the
nilCoxeter algebra, say e_1, on an expression exp.
- Simple divided differences Di are defined to be the operators:
f(..., x_i, x_{i+1}, ...) - f(..., x_{i+1}, x_i, ...)
f --> -----------------------------------------------------
x_i - x_{i+1}
- By default the algebra acts on the variables x1, x2, x3, ...
- When called with a third argument v, being, say `y`, the NcaOnPol
function acts on the variables y1, y2, y3, ...
- Whenever there is a conflict between the function name NcaOnPol and
another name used in the same session, use the long form NCA['NcaOnPol'].
EXAMPLES:
> with(NCA):
> NcaOnPol(q^2*A[3,1,2], x1^2*x2*y1^2*y2^3);
2 2 3
q x1 y1 y2
> NcaOnPol(q^2*A[3,1,2], x1^2*x2*y1^2*y2^3, `y`);
2 2 2
- q (y2 + y3) y1 x1 x2
SEE ALSO: