FUNCTION: IdcaYang - compute a special element of the idCoxeter algebra
CALLING SEQUENCE:
- IdcaYang(perm)
- IDCA[IdcaYang](perm)
-
PARAMETERS:
- perm = any list denoting a permutation
SYNOPSIS:
- The IdcaYang function calculates a special element of the idCoxeter
algebra.
- { IdcaYang(perm), perm in ListPerm(n) } is a linear basis of the
idCoxeter algebra, as a free module with coefficients in the xi's.
- When called with a second parameter, say 'y', one specifies that
coefficients are in the yi's.
- When this second parameter is 'num' then x1, x2, x3, ... are specialized
to q^1, q^2, q^3, ...
- This basis is defined by the recursion : for a simple transposition sk
and a permutation perm, such that length(perm sk) > length(perm), then
IdcaYang(perm sk) = IdcaYang(perm) &$* (1 + (1 - x_j / x_i) sk) where
i=perm[k] and j=perm[k+1].
- Coefficients in the expansion are specializations of double Grothendieck
polynomials.
- Whenever there is a conflict between the function name IdcaYang and
another name used in the same session, use the long form
IDCA['IdcaYang'].
EXAMPLES:
> with(IDCA):
> IdcaYang([3,1,2]);
(x1 - x3) A[2, 1, 3] (x2 - x3) A[1, 3, 2]
-------------------- + -------------------- + A[1, 2, 3]
x1 x2
(x1 - x3) (x2 - x3) A[3, 1, 2]
+ ------------------------------
x1 x2
SEE ALSO: