ACE BN BNA CG CLG COMP FM FREE HEKA IDCA NCA NCSF PART SFA SG SGA SP SYMF TAB TYP

FUNCTION: HekaOnXfix - action of an element of the Hecke algebra of the symmetric group on the ring of polynomials as a free module over Sym

CALLING SEQUENCE:

HekaOnXfix(e_1, exp)
HEKA[HekaOnXfix](e_1, exp)

PARAMETERS:

e_1 = any element of the Hecke algebra of the symmetric group
exp = any expression

SYNOPSIS:

EXAMPLES:


> with(HEKA):
> _FMn;
 
                                      4
 
> HekaOnXfix(q*A[1,3,2], s[1,1]*X[2,4,1,3], collect);
 
  q2 X[2, 4, 1, 3] s[1, 1] q + (s[2, 1] + s[1, 1, 1]) q1 q X[2, 1, 4, 3]
 
     + q2 X[2, 3, 4, 1] s[1, 1] q - q1 X[4, 1, 2, 3] s[1, 1] q
 
     - (s[2, 2] + s[2, 1, 1] + s[1, 1, 1, 1]) q1 q X[2, 1, 3, 4]
 

SEE ALSO: FM[FM_n]