FUNCTION: HekaOnX - action of an element of the Hecke algebra of the
symmetric group on a linear combination of X[perm]
CALLING SEQUENCE:
- HekaOnX(e_1, exp)
- HEKA[HekaOnX](e_1, exp)
-
PARAMETERS:
- e_1 = any element of the Hecke algebra of the symmetric group
- exp = any expression
SYNOPSIS:
- The HekaOnX function realizes the action of an element of the Hecke
algebra of the symmetric group, say e_1, on an expression exp expressed
on the X Schubert basis.
- The expression exp is expanded and the result is not collected.
- One may add 'noexpand' just after the argument exp to choose not to
expand the expression exp before treating it.
- One may collect the result by adding a third argument: this is done
by HekaOnX(e_1, exp, 'collect'). Moreover, one can use both noexpand and
collect options: for instance, HekaOnX(e_1, exp, 'noexpand', 'collect').
- The action of the element SgTranspo(i,n) on the Schubert polynomial
X[perm] is : let nu = MultPerm(perm, SgTranspo(i,n)), then
X[perm] --> q1 X[perm] if length(nu) > length(perm)
X[perm] --> q1 X[perm] + (q2 x_i + q1 x_{i+1}) X[nu] otherwise.
- The result is expressed on the X Schubert basis and is not collected.
- Whenever there is a conflict between the function name HekaOnX and
another name used in the same session, use the long form HEKA['HekaOnX'].
EXAMPLES:
> with(HEKA):
> HekaOnX(a^4*A[1,3,2] - a^3*A[2,1], z*X[3,2,1] - X[2,1,3]);
3 3 4
- q2 X[3, 2, 1] z a - q1 X[2, 4, 1, 3] z a + q2 X[3, 2, 1] z a
4 3
+ q1 X[3, 1, 4, 2] z a + q2 X[2, 1] a
3 4
+ q1 X[1, 3, 2] a - a q1 X[2, 1]
SEE ALSO: