FUNCTION: HekaOnPol - action of an element of the algebra on a polynomial
CALLING SEQUENCE:
- HekaOnPol(e_1, exp)
- HekaOnPol(e_1, exp, v)
- HEKA[HekaOnPol](e_1, exp)
- HEKA[HekaOnPol](e_1, exp, v)
-
PARAMETERS:
- e_1 = any element of the Hecke algebra of the symmetric group
- exp = any expression
- v = any (extra) string
SYNOPSIS:
- The HekaOnPol function realizes the action of an element of the
Hecke algebra of the symmetric group, say e_1, on an expression exp.
- The action of the element SgTranspo(i,n) is :
(exp - exp') (q2 x_i + q1 x_{i+1})
exp --> ---------------------------------- + q1 exp
(x_i - x_{i+1})
where exp' is the image of exp under SgTranspo(i,n).
- By default the algebra acts on the variables x1, x2, x3, ...
- When called with a third argument v, being, say `y`, the HekaOnPol
function acts on the variables y1, y2, y3, ...
- Whenever there is a conflict between the function name HekaOnPol and
another name used in the same session, use the long form
HEKA['HekaOnPol'].
EXAMPLES:
> with(HEKA):
> HekaOnPol(A[2,1], 1);
q1
> HekaOnPol(A[2,1], x1);
x2 q1 + x1 q2 + q1 x1
> HekaOnPol(a^2*A[3,1,2], x1^2*x2*y1*y2^3);
2 2 2 2 2
a (x3 q1 + x3 q1 x1 + x2 q2 x3 q1 + x3 x1 q2 q1 + x3 q1 x2
2 2 2 2 2 3
+ 2 x2 x1 q2 q1 + x1 q2 x2 + x2 q1 x1 + x2 q1 q2 + x2 q1 ) x1 y1 y2
> HekaOnPol(a^2*A[3,1,2], x1^2*x2*y1^2*y2^3, `y`);
2 2 2 2 2 3
- a (y2 q2 + q1 y2 + y2 y3 q2 + y2 y3 q1 + y3 q1) q2 x1 x2 y1
SEE ALSO: