FUNCTION: HekaJucis - Jucis-Murphy element of the Hecke algebra
CALLING SEQUENCE:
- HekaJucis(i)
- HEKA[HekaJucis](i)
-
PARAMETERS:
- i = any positive integer
SYNOPSIS:
- The HekaJucis function computes the i-th Jucis-Murphy element inside the
Hecke algebra of the symmetric group of degree n (i<=n), where n is
taken to be i by default or the second argument if available.
- The algebra generated by the Jucis-Murphy elements is a maximal
commutative sub-algebra of the Hecke algebra.
- More explicitly, denoting t(i,j) the transposition exchanging i and j,
we have: HekaJucis(1) = 0, HekaJucis(2) = (q1+q2)*t(1,2) - q1*q2,
HekaJucis(3) = (q1+q2)t(1,3) - (q1+q2)*q1*q2*t(2,3) + q1^2*q2^2 and
HekaJucis(4) = (q1+q2)t(1,4) - (q1+q2)*q1*q2*t(2,4) + (q1+q2)*q1^2*q2^2
t(3,4) - q1^3*q2^3.
- Whenever there is a conflict between the function name HekaJucis and
another name used in the same session, use the long form
HEKA['HekaJucis'].
EXAMPLES:
> with(HEKA):
> HekaJucis(2);
(q1 + q2) A[2, 1] - q1 q2 A[1, 2]
> HekaJucis(4, 6);
(q1 + q2) A[4, 2, 3, 1, 5, 6] - (q1 + q2) q1 q2 A[1, 4, 3, 2, 5, 6]
2 2 3 3
+ (q1 + q2) q1 q2 A[1, 2, 4, 3, 5, 6] - q1 q2 A[1, 2, 3, 4, 5, 6]
SEE ALSO: SG[SgTranspo] SGA[SgaJucis]