FUNCTION: IdcaOnFree - action of the idCoxeter algebra on words
CALLING SEQUENCE:
- IdcaOnFree(e_1, free)
- FREE[IdcaOnFree](e_1, free)
-
PARAMETERS:
- e_1 = any element of the idCoxeter algebra
- free = any element of the free algebra
SYNOPSIS:
- The IdcaOnFree function realizes the action of the idCoxeter algebra
on the free algebra.
- The elementary action of a simple transposition, say (1,2), on a word v
is as follows: forget all letters different from 1 and 2, then cross
out all successive factors [2,1] of what is left, in any order. The
remaining word is of the type v'=w[1$a,2$b]. If a>b then the image of v
is the sum of all words obtained from v by replacing its subword v' by
w[1$(a-1), 2$(b+1)], ..., w[1$b, 2$a] successively. If a=b, it is sent
to 0. If a<b it is sent to minus the image of the word where v' is
exchanged into w[1$b, 2$a].
- For example, IdcaOnFree(A[2,1], w[3,1,1,1,2,1,2]) = w[3,1,1,2,2,1,2]
+ w[3,1,2,2,2,1,2] because v' = [*,1,1,1,*,*,2].
- Whenever there is a conflict between the function name IdcaOnFree and
another name used in the same session, use the long form
FREE['IdcaOnFree'].
EXAMPLES:
> with(FREE):
> IdcaOnFree(A[2,1], w[3,1,1,1,2,1,2]);
w[3, 1, 2, 2, 2, 1, 2] + w[3, 1, 1, 2, 2, 1, 2]
SEE ALSO: SgaOnFree