ACE | BN | BNA | CG | CLG | COMP | FREE | HEKA | IDCA | NCA | NCSF | PART | SFA | SG | SGA | SP | SYMF | TAB | TYP |
FUNCTION: x2Xfix - from the basis of monomials to X Schubert basis of the ring of polynomials as a free module over Sym
CALLING SEQUENCE:
PARAMETERS:
SYNOPSIS:
EXAMPLES:
> with(FM): > FM_n(4); 4 > x2Xfix((1+q)^5*x1*x3^3): # expands the input > x2Xfix((1+q)^5*x1*x3^3,noexpand): # does not expand (1+q)^5 > x2Xfix((1+q)^5*x1*x3^3,collect): # collects the result > x2Xfix((1+q)^5*x1*x3^3,noexpand,collect): > x2Xfix(q*x2^2*x4 - x3^3*x4, collect); (s[2, 2] - q s[1, 1, 1]) X[1, 2, 3, 4] - X[1, 2, 4, 3] s[2, 1] + (- q s[1] - s[1, 1]) X[2, 3, 1, 4] + (s[2] + s[1, 1]) X[1, 3, 4, 2] + s[1, 1] X[1, 4, 2, 3] + (- s[1] + q) X[2, 3, 4, 1] - q s[1] X[3, 1, 2, 4] + X[3, 4, 1, 2] + (- q - s[1]) X[1, 4, 3, 2] + q X[3, 1, 4, 2] + X[2, 4, 3, 1] + q s[1, 1] X[1, 3, 2, 4] + q X[4, 1, 2, 3] + q X[2, 4, 1, 3]
SEE ALSO: FM_n x2XfixScal Xfix2x