FUNCTION: Tos_n - express any symmetric function in the basis of Schur
functions
CALLING SEQUENCE:
- Tos_n(sf)
- Tos_n(sf, b)
- CLG[Tos_n](sf)
- CLG[Tos_n](sf, b)
-
PARAMETERS:
- sf = any symmetric function
- b = any name of a known basis
SYNOPSIS:
- The Tos_n function expresses any symmetric function in the basis of
Schur functions, i.e. as a linear combination of Schur functions.
It sends to 0 all Schur functions indexed by partitions with more than
_CLGn parts.
- The input is any expression in terms of the basic symmetric functions.
- The symmetric function sf is expanded and the result is not collected.
- One may specify by a second argument, say b, that sf is solely expressed
in terms of the known basis b.
- One may add 'noexpand' just after the argument sf to choose not to
expand the symmetric function sf before treating it.
- One may collect the result by adding a third argument: this is done
by Tos_n(sf, b, 'collect'). For instance, Tos_n(sf, 's', 'collect') may
be used to collect the argument sf.
- Whenever there is a conflict between the function name Tos_n and another
name used in the same session, use the long form CLG['Tos_n'].
EXAMPLES:
> with(CLG):
> _CLGn;
5
> Tos_n((1+q)^5*e3*e4): # expands the input
> Tos_n((1+q)^5*e3*e4,noexpand): # does not expand (1+q)^5
> Tos_n((1+q)^5*e3*e4,collect): # collects the result
> Tos_n((1+q)^5*e3*e4,noexpand,'e'): # the most efficient
> Tos_n((1+q)^5*e3*e4,'e',collect): # specifies a basis
> Tos_n((1+q)^5*e3*e4,noexpand,'e',collect):
> Tos_n(s[2,1]*h4 - 2*q*p3 + aa*s[1,1,1,1,1,1]);
s[4, 2, 1] + s[5, 1, 1] + s[5, 2] + s[6, 1]
- 2 (s[3] - s[2, 1] + s[1, 1, 1]) q
SEE ALSO: TYP[Sf] Toe_n Toh_n Tom_n Top_n