FUNCTION: Tom_n - express any symmetric function in the basis of
monomial symmetric functions
CALLING SEQUENCE:
- Tom_n(sf)
- Tom_n(sf, b)
- CLG[Tom_n](sf)
- CLG[Tom_n](sf, b)
-
PARAMETERS:
- sf = any symmetric function
- b = any name of a known basis
SYNOPSIS:
- The Tom_n function expresses any symmetric function in the basis of
monomial symmetric functions. It sends to 0 all those which are indexed
by partitions with more than _CLGn parts.
- The input is any expression in terms of the basic symmetric functions.
- The symmetric function sf is expanded and the result is not collected.
- One may specify by a second argument, say b, that sf is solely expressed
in terms of the known basis b.
- One may add 'noexpand' just after the argument sf to choose not to
expand the symmetric function sf before treating it.
- One may collect the result by adding a third argument: this is done
by Tom_n(sf, b, 'collect'). For instance, Tom_n(sf, 'm', 'collect') may
be used to collect the argument sf.
- Whenever there is a conflict between the function name Tom_n and another
name used in the same session, use the long form CLG['Tom_n'].
EXAMPLES:
> with(CLG):
> _CLGn;
5
> Tom_n((1+q)^5*e3*e4): # expands the input
> Tom_n((1+q)^5*e3*e4,noexpand): # does not expand (1+q)^5
> Tom_n((1+q)^5*e3*e4,collect): # collects the result
> Tom_n((1+q)^5*e3*e4,noexpand,'e'): # the most efficient
> Tom_n((1+q)^5*e3*e4,'e',collect): # specifies a basis
> Tom_n((1+q)^5*e3*e4,noexpand,'e',collect):
> Tom_n(s[2,1]*h4 - 2*q*p3 + aa*m[1,1,1,1,1,1]);
m[6, 1] + 2 m[5, 2] + 4 m[5, 1, 1] + 2 m[4, 3] + 6 m[4, 2, 1]
+ 11 m[4, 1, 1, 1] + 6 m[3, 3, 1] + 8 m[3, 2, 2] + 14 m[3, 2, 1, 1]
+ 24 m[3, 1, 1, 1, 1] + 17 m[2, 2, 2, 1] + 28 m[2, 2, 1, 1, 1] - 2 q m[3]
SEE ALSO: Toe_n Toh_n Top_n Tos_n