FUNCTION: Toe_n - convert any symmetric function to a e-polynomial
CALLING SEQUENCE:
- Toe_n(sf)
- Toe_n(sf, b)
- CLG[Toe_n](sf)
- CLG[Toe_n](sf, b)
-
PARAMETERS:
- sf = any symmetric function
- b = any name of a known basis
SYNOPSIS:
- The Toe_n function converts any symmetric function to a e-polynomial.
The e.k, for k>_CLGn, are sent to 0.
- The input is any expression in terms of the basic symmetric functions.
- The symmetric function sf is expanded and the result is not collected.
- One may specify by a second argument, say b, that sf is solely expressed
in terms of the known basis b.
- One may add 'noexpand' just after the argument sf to choose not to
expand the symmetric function sf before treating it.
- One may collect the result by adding a third argument: this is done
by Toe_n(sf, b, 'collect'). For instance, Toe_n(sf, 'e', 'collect') may
be used to collect the argument sf.
- Whenever there is a conflict between the function name Toe_n and another
name used in the same session, use the long form CLG['Toe_n'].
EXAMPLES:
> with(CLG):
> _CLGn;
5
> Toe_n((1+q)^5*s[3,2,2,1]): # expands the input
> Toe_n((1+q)^5*s[3,2,2,1],noexpand): # does not expand (1+q)^5
> Toe_n((1+q)^5*s[3,2,2,1],collect): # collects the result
> Toe_n((1+q)^5*s[3,2,2,1],noexpand,'s'): # the most efficient
> Toe_n((1+q)^5*s[3,2,2,1],'s',collect): # specifies a basis
> Toe_n((1+q)^5*s[3,2,2,1],noexpand,'s',collect):
> Toe_n(s[2,1]*h4 - 2*q*p3 + aa*e6);
2 2 3 2
- e4 e2 e1 + e4 e3 + 5 e3 e1 e2 - 2 e3 e1 + e2 e1 - e2 e3
2 3 5 4 3
- 3 e2 e1 + e1 e2 - e1 e3 - 6 q e3 + 6 q e2 e1 - 2 q e1
SEE ALSO: TYP[Sf] Toh_n Tom_n Top_n Tos_n