FUNCTION: BnNcaYang - Yang-Baxter element of the Bn-nilCoxeter algebra
CALLING SEQUENCE:
- BnNcaYang(code)
- BNA[BnNcaYang](code)
-
PARAMETERS:
- code = any list denoting a code
SYNOPSIS:
- The BnNcaYang function calculates a Yang-Baxter element of the
Bn-nilCoxeter algebra.
- The set BnNcaYang(code), for all codes in Bn is a linear basis of the
Bn-nilCoxeter algebra, as a free module with coefficients in the xi's.
- When called with a second parameter, say 'y', one specifies that
coefficients are in the yi's.
- When this second parameter is 'num' then x1, x2, x3, ... are specialized
to 1, 2, 3, ...
- This basis is defined by the recursion : for a simple reflection sk,
k>0 and a code, such that length(code sk) > length(code), then one has
BnNcaYang(code sk) = BnNcaYang(code) &!@* (1 + (sign(perm[k])*x_j -
sign(perm[k+1])*x_i) Dk) where i=abs(perm[k]), j=abs(perm[k+1]) and perm
is the corresponding signed permutation. When k=0, one has:
BnNcaYang(code s0) = BnNcaYang(code) &!@* (1 - 2*(sign(perm[1])*x_i) D0)
in which i=abs(perm[1]). D0, D1, D2, ... denote the generators of the
Bn-nilCoxeter algebra.
- Whenever there is a conflict between the function name BnNcaYang and
another name used in the same session, use the long form
BNA['BnNcaYang'].
EXAMPLES:
> with(BNA):
> BnNcaYang([0,2]);
- 2 (x2 - x1) x2 B[0, 2] + (x2 - x1) B[0, 1] - 2 x2 B[1, 0] + B[0, 0]
> BnNcaYang([0,2], 'num');
- 4 B[0, 2] + B[0, 1] - 4 B[1, 0] + B[0, 0]
SEE ALSO: BnGaYang BnIdcaYang