FUNCTION: BnNcaOnPol - action of an element of the Bn-nilCoxeter algebra
CALLING SEQUENCE:
- BnNcaOnPol(e_1, exp)
- BnNcaOnPol(e_1, exp, v)
- BNA[BnNcaOnPol](e_1, exp)
- BNA[BnNcaOnPol](e_1, exp, v)
-
PARAMETERS:
- e_1 = any element of the Bn-nilCoxeter algebra
- exp = any expression
- v = any (extra) string
SYNOPSIS:
- The BnNcaOnPol function realizes the action of an element of the Bn-
nilCoxeter algebra, say e_1, on an expression exp.
- Simple divided differences Di are the operators:
f(..., x_i, x_{i+1}, ...) - f(..., x_{i+1}, x_i, ...)
f --> -----------------------------------------------------, i<>0
x_i - x_{i+1}
f(..., x_i, ...) - f(..., -x_{i}, ...)
f --> --------------------------------------, i=0
2*x_i
- By default the algebra acts on the variables x1, x2, x3, ...
- When called with a third argument v, being, say `y`, the BnNcaOnPol
function acts on the variables y1, y2, y3, ...
- Whenever there is a conflict between the function name BnNcaOnPol and
another name used in the same session, use the long form
BNA['BnNcaOnPol'].
EXAMPLES:
> with(BNA):
> BnNcaOnPol(B[1,0,1], x1^3*x2^2*y3^2);
2 2
(x3 + x2) x1 y3
> BnNcaOnPol(B[1,0,1], x1^3*x2^2*y3^2, `y`);
0
SEE ALSO: BnGaOnPol BnIdcaOnPol