FUNCTION: BnIdcaYang - Yang-Baxter element of the Bn-idCoxeter algebra
CALLING SEQUENCE:
- BnIdcaYang(code)
- BNA[BnIdcaYang](code)
-
PARAMETERS:
- code = any list denoting a code
SYNOPSIS:
- The BnIdcaYang function calculates a Yang-Baxter element of the
Bn-idCoxeter algebra.
- The set BnIdcaYang(code), for all codes in Bn is a linear basis of the
Bn-idCoxeter algebra, as a free module with coefficients in the xi's.
- When called with a second parameter, say 'y', one specifies that
coefficients are in the yi's.
- When this second parameter is 'num' then x1, x2, x3, ... are specialized
to q^1, q^2, q^3, ...
- This basis is defined by the recursion : for a simple reflection sk,
k>0 and a code of B(n), such that length(code sk)>length(code), then one
has BnIdcaYang(code sk) = BnIdcaYang(code) &!$* (1 + (1 - (x_j1*x_j2) /
(x_i1*x_i2)) Pk) where i1=palin[n-k], i2=palin[n+k], j1=palin[n-k+1],
j2=palin[n+k-1] and palin is the BnCode2Palin(code). If k=0, then the
expression becomes BnIdcaYang(code sk) = BnIdcaYang(code) &!$* (1 + (1 -
(x_j/x_i)) P0) where i=palin[n] and j=palin[n+1]. P0, P1, P2, ... denote
the generators of the Bn-idCoxeter algebra.
- Whenever there is a conflict between the function name BnIdcaYang and
another name used in the same session, use the long form
BNA['BnIdcaYang'].
EXAMPLES:
> with(BNA):
> BnIdcaYang([0,2]);
(- x1 x3 + x2 x4) B[0, 1] (- x1 + x4) (- x1 x3 + x2 x4) B[0, 2]
- ------------------------- + -------------------------------------
x1 x3 2
x1 x3
(- x1 + x4) B[1, 0]
- ------------------- + B[0, 0]
x1
> BnIdcaYang([0,2], 'num');
2 3 2 3
(1 - q ) B[0, 1] + (- 1 + q ) (- 1 + q ) B[0, 2] + (1 - q ) B[1, 0]
+ B[0, 0]
SEE ALSO: BnGaYang BnNcaYang