FUNCTION: BnIdcaOnPol - action of an element of the Bn-idCoxeter algebra
CALLING SEQUENCE:
- BnIdcaOnPol(e_1, exp)
- BnIdcaOnPol(e_1, exp, v)
- BNA[BnIdcaOnPol](e_1, exp)
- BNA[BnIdcaOnPol](e_1, exp, v)
-
PARAMETERS:
- e_1 = any element of the Bn-idCoxeter algebra
- exp = any expression
- v = any (extra) string
SYNOPSIS:
- The BnIdcaOnPol function realizes the action of an element of the Bn-
idCoxeter algebra, say e_1, on an expression exp.
- The action of the i-th elementary generator is:
(exp - exp')
exp -> --------------- x_{i+1}, i<>0
x_i - x_{i+1}
(x1*exp - 1/x1*exp'')
exp -> -----------------------, i=0
1/x1 - x1
where exp' is the image of exp under the exchange of x_i and x_{i+1}
and exp'' is the image of exp under the exchange of x1 and 1/x1.
- By default the algebra acts on the variables x1, x2, x3, ...
- When called with a third argument v, being, say `y`, the BnIdcaOnPol
function acts on the variables y1, y2, y3, ...
- Whenever there is a conflict between the function name BnIdcaOnPol and
another name used in the same session, use the long form
BNA['BnIdcaOnPol'].
EXAMPLES:
> with(BNA):
> BnIdcaOnPol(B[1,0,1], x1^3*x2^2*y3^2);
6 4 2 2
(x1 + x1 + x1 + 1) (x2 + x3) y3 x3
- --------------------------------------
3
x1
> BnIdcaOnPol(B[1,0,1], x1^3*x2^2*y3^2, `y`);
2 3
(y3 + y2) x2 x1 y3
SEE ALSO: BnGaOnPol BnNcaOnPol