FUNCTION: BnGaYang - Yang-Baxter element of the Bn-group algebra
CALLING SEQUENCE:
- BnGaYang(code)
- BNA[BnGaYang](code)
-
PARAMETERS:
- code = any list denoting a code
SYNOPSIS:
- The BnGaYang function calculates a Yang-Baxter element of the Bn-group
algebra.
- The set of BnGaYang(code), for all codes in Bn, is a linear basis of the
Bn-group algebra, as a free module with coefficients in the xi's.
- When called with a second parameter, say 'y', one specifies that
coefficients are in the yi's.
- When this second parameter is 'num' then x1, x2, x3, ... are specialized
to 1, 2, 3, ...
- This basis is defined by the recursion : for a simple reflection sk,
k>0 and a code, such that length(code sk) > length(code), then one has
BnGaYang(code sk) = BnGaYang(code) &!!* (1 + (sign(perm[k])*x_j -
sign(perm[k+1])*x_i) sk) where i=abs(perm[k]), j=abs(perm[k+1]) and perm
is the corresponding signed permutation. When k=0, one has:
BnGaYang(code s0) = BnGaYang(code) &!!* (1 - 2*(sign(perm[1])*x_i) s0)
in which i=abs(perm[1]).
- Whenever there is a conflict between the function name BnGaYang and
another name used in the same session, use the long form
BNA['BnGaYang'].
EXAMPLES:
> with(BNA):
> BnGaYang([0,2]);
(x2 - x1) B[0, 1] + B[0, 0] - 2 (x2 - x1) x2 B[0, 2] - 2 x2 B[1, 0]
> BnGaYang([0,2], 'num');
B[0, 1] + B[0, 0] - 4 B[0, 2] - 4 B[1, 0]
SEE ALSO: BnIdcaYang BnNcaYang